\qquad
\qquad (

Date: \qquad

Chapter 7	Equations of Circles	
	7A	p.2
	7B	p.19
	7C	p.30
Chapter 8	Locus	
	8A	p.46
	8B	p. 57
Chapter 9	Solving Triangles	
	9A	p. 67
	9B	p. 81
	9C	p. 92

For any updates of this book, please refer to the subject homepage:
http://teacher.lkl.edu.hk/subject\ homepage/MAT/index.html

For mathematics problems consultation, please email to the following address:
1kl.mathematics@gmail.com

For Maths Corner Exercise, please obtain from the cabinet outside Room 309

F5B: Chapter 7A			
Date	Task	Progress	
	Lesson Worksheet	Complete and Checked Problems encountered Skipped	
	Book Example 1	Complete Problems encountered Skipped	
	Book Example 2	Complete Problems encountered Skipped	(Video Teaching)
	Book Example 3	Complete Problems encountered Skipped	
	Book Example 4	Complete Problems encountered Skipped	
	Book Example 5	Complete Problems encountered Skipped	
	Book Example 6	Complete Problems encountered Skipped	
	Book Example 7	Complete Problems encountered Skipped	

Book Example 8	Complete Problems encountered Skipped			
Consolidation Exercise	Complete and Checked Problems encountered Skipped			
Maths Corner Exercise 7A Level 1	O Complete and Checked Problems encountered Skipped	Teacher's Signature		
Maths Corner Exercise 7A Level 2	Complete and Checked Problems encountered Skipped	Teacher's Signature		
Maths Corner Exercise 7A Multiple Choice	Complete and Checked Problems encountered Skipped	Teacher's Signature		
E-Class Multiple Choice Self-Test	Complete and Checked Problems encountered Skipped	Mark:		

Objective: To review the distance formula, equations of straight lines, nature of roots of a quadratic equation and basic properties of circles.

Distance Formula

1. Distance between $A(18,14)$ and $B(3,6)$
$=\sqrt{(\quad)^{2}+(\quad)^{2}}$
Distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
\qquad
$=$

Equations of Straight Lines

3. The equation of the straight line with slope -2 and passing through $(3,2)$ is
$y-(\quad)=(\quad)[(\quad)-(\quad)] \quad y-y_{1}=m\left(x-x_{1}\right)$ $=$
4. The equation of the straight line passing through $(2,9)$ and $(0,3)$ is

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

2. Distance between $M(5,4)$ and $N(-7,9)$
$=$
\rightarrow Review Ex: 1, 2
3. The equation of the straight line passing through $(5,-1)$ and $(1,-3)$ is

Slope $=-\frac{(\quad)}{(\quad)}=\underline{=}$ $==\begin{aligned} & \text { For } A x+B y+C=0, \\ & \text { slope }=-\frac{A}{B}, \\ & x \text {-intercept }=-\frac{C}{A}\end{aligned}$
7. Consider the straight line $2 x-y-8=0$.
x-intercept $=-\frac{(\quad)}{(\quad)}=$ \qquad
8. Consider the straight line $3 x+4 y-6=0$.

Slope $=$
\rightarrow Review Ex: 9
y-intercept $=$
y-intercept $=-\frac{C}{B}$
4. The equation of the straight line with slope 5 and y-intercept -6 is
\rightarrow Review Ex: 3-8

$$
y=m x+b
$$

Nature of Roots of a Quadratic Equation

In each of the following, find the value of the discriminant and then find the number of real roots of the equation. [Nos. 9-10]
\rightarrow Review Ex: 10
9. $x^{2}+2 x+4=0$
10. $5 x^{2}-8 x+1=0$
$\Delta=(\quad)^{2}-4(\quad)(\quad) \quad \Delta=b^{2}-4 a c$
$=$ \qquad
$\because \Delta(>/=/<) 0$
\therefore Number of real roots $=$ \qquad

In each of the following, O is the centre. Find the unknowns. [Nos. 11-14]
11. $A N B$ is a straight line and $O N=B N$.

12. Radius of the circle $=5 \mathrm{~cm}$ $A N B$ is a straight line.
\rightarrow Review Ex: 12-14

$8<13$. TA touches the circle at A.

$8<14 . T A$ touches the circle at A. $O B T$ is a straight line.

食Level Up Question令

15. The quadratic equation $x^{2}+2 x+k=3$ has two distinct real roots, where k is a positive integer. $\stackrel{\text { Explain }}{ }$ How many possible values of k are there? Explain your answer.

Objective: To understand the standard form of the equations of circles.

Standard Form of the Equations of Circles

(a) The equation of a circle in the standard form is $(x-h)^{2}+(y-k)^{2}=r^{2}$.
(b) If the centre of a circle with radius r is at the origin $(0,0)$, i.e. $h=k=0$, the equation of the circle is $x^{2}+y^{2}=r^{2}$.

Instant Example 1

Write down the equation of the circle with centre at $(-2,3)$ and radius 5 in the standard form.

The equation of the circle is
$[x-(-2)]^{2}+(y-3)^{2}=5^{2}$
$(x+2)^{2}+(y-3)^{2}=25$

Instant Practice 1

Write down the equation of the circle with centre at $(4,-6)$ and radius 7 in the standard form. The equation of the circle is $[x-(\quad)]^{2}+[y-(\quad)]^{2}=(\quad)^{2}$

Write down the equation of each of the following circles in the standard form. [Nos. 1-4]

1. A circle with centre at $(0,0)$ and radius $\sqrt{8}$.

The equation of the circle is
$x^{2}+(\quad)^{2}=(\quad)^{2}$ \square

\qquad
3. A circle with centre at $(-5,0)$ and radius 2 .

2. A circle with centre at $(6,9)$ and radius 10 .

4. A circle with centre at $(-4,-3)$ and radius $\sqrt{6}$.

Instant Example 2

Find the standard equation of the circle shown in the figure.

Radius $=A G$

$$
=7-2
$$

$$
=5
$$

\therefore The equation of the circle is

$$
\begin{aligned}
(x-2)^{2}+(y-0)^{2} & =5^{2} \\
(x-2)^{2}+y^{2} & =25
\end{aligned}
$$

Instant Practice 2

Find the standard equation of the circle shown in the figure.

Radius $=B G$

$$
\begin{aligned}
& =(\quad)-(\quad) \\
& =(\quad)
\end{aligned}
$$

\therefore The equation of the circle is

$$
[x-(\quad)]^{2}+[y-(\quad)]^{2}=(\quad)^{2}
$$

In each of the following, find the standard equation of the circle shown in the figure. [Nos. 5-6]
5. Radius $=C G$

$$
=(\quad)-(\quad)
$$

6.

\rightarrow Ex 7A: 3, 4

Instant Example 3

Write down the coordinates of the centre and the radius of the circle $(x+4)^{2}+(y-2)^{2}=49$.
$(x+4)^{2}+(y-2)^{2}=49$
$[x-(-4)]^{2}+(y-2)^{2}=7^{2} \quad \longleftarrow \quad \begin{aligned} & \text { Rewrite the equation in } \\ & \text { the standard form first. }\end{aligned}$
\therefore The coordinates of the centre are $(-4,2)$ and the radius is 7 .

Instant Practice 3

Write down the coordinates of the centre and the radius of the circle $4(x-1)^{2}+4(y+7)^{2}=16$.

$$
\begin{aligned}
4(x-1)^{2}+4(y+7)^{2} & =16 \\
(x-1)^{2}+(y+7)^{2} & =(\quad) \\
{[x-(\quad)]^{2}+[y-(\quad)]^{2} } & =(\quad)^{2}
\end{aligned}
$$

$\therefore \quad$ The coordinates of the centre are (\qquad) and the radius is ().

For each of the following equations of circles, write down the coordinates of the centre and the radius of the circle. [Nos. 7-10]
7.

$$
\begin{aligned}
x^{2}+(y-4)^{2} & =36 \\
{[x-(\quad)]^{2}+[y-(\quad)]^{2} } & =(\quad)^{2}
\end{aligned}
$$

9. $3(x-6)^{2}+3(y-5)^{2}=243$
10. $5(x+3)^{2}+5(y+2)^{2}=15$

Convert the coefficients of x^{2} and y^{2} to 1 .
10. $5(x+3)^{2}+5(y+2)^{2}=15$
8. $(x-8)^{2}+(y+1)^{2}=25$

食Level Up Question食

11. In the figure, $G(m, 0)$ is the centre of the circle, where $0<m<7$. The circle passes through $P(7,4)$ and its radius is 5 .
(a) Find the value of m.
(b) Find the equation of the circle in the standard form.

5B Lesson Worksheet 7.1B

Objective: To understand the general form of the equations of circles.

General Form of the Equation of a Circle

(a) The equation of a circle in the general form is $x^{2}+y^{2}+D x+E y+F=0$, where D, E and F are constants.
(b) Consider a circle $x^{2}+y^{2}+D x+E y+F=0$.
(i) Coordinates of the centre (h, k)
(ii) Radius $r=\sqrt{h^{2}+k^{2}-F}$

$$
=\left(-\frac{D}{2},-\frac{E}{2}\right)
$$

$$
=\sqrt{\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F}
$$

Instant Example 1

Convert the equation of the circle
$(x-2)^{2}+(y+5)^{2}=4$ into the general form.

$$
\begin{array}{r}
(x-2)^{2}+(y+5)^{2}=4 \\
x^{2}-4 x+4+y^{2}+10 y+25=4 \\
x^{2}+y^{2}-4 x+10 y+25=0
\end{array} \quad \begin{aligned}
& \text { In the general form, } \\
& \text { make sure that the } \\
& \text { R.H.S. of the equation } \\
& \text { is } 0 .
\end{aligned}
$$

Instant Practice 1

Convert the equation of the circle $(x+3)^{2}+(y-4)^{2}=7$ into the general form.

$$
\begin{aligned}
(x+3)^{2}+(y-4)^{2} & =7 \\
x^{2}+(\quad) x+(\quad)+y^{2}-(\quad) y+(\quad) & =7
\end{aligned}
$$

Convert the following equations of circles into the general form. [Nos. 1-2]
1.
$(x-6)^{2}+y^{2}=9$
$x^{2}-(\quad) x+(\quad)+y^{2}=9$
In the general form,
(i) are the coefficients of x^{2} and y^{2} equal to 1 ?
(ii) is there any $x y$ term?

Instant Example 2

Find the coordinates of the centre and the radius of the circle $4 x^{2}+4 y^{2}-16 x+32 y+44=0$.

$$
4 x^{2}+4 y^{2}-16 x+32 y+44=0
$$

$$
x^{2}+y^{2}-4 x+8 y+11=0 \triangleleft \text { Convert the coefficients }
$$

Coordinates of the centre
$=\left(-\frac{-4}{2},-\frac{8}{2}\right)$
$=\underline{(2,-4)}$
Radius $=\sqrt{2^{2}+(-4)^{2}-11}$

$$
=\underline{\underline{3}}
$$

Instant Practice 2

Find the coordinates of the centre and the radius of the circle $3 x^{2}+3 y^{2}+18 x-30 y=6$.

$$
\begin{aligned}
3 x^{2}+3 y^{2}+18 x-30 y & =6 \\
x^{2}+y^{2}+(\quad) x-(\quad) y & =(\quad)
\end{aligned}
$$

Coordinates of the centre
$=\left(-\frac{(\quad)}{2},-\frac{(\quad)}{2}\right)$
$=(\quad, \quad)$
Radius $=\sqrt{(\quad)^{2}+(\quad)^{2}-(\quad)}$
\qquad
$D=$ \qquad
$E=$
$F=$ \qquad

Find the coordinates of the centre and the radius of each of the following circles. [Nos. 3-6]
3. $x^{2}+y^{2}-10 x-24 y=0$

Coordinates of the centre $=\left(-\frac{(\quad)}{2},-\frac{(\quad)}{2}\right)$
$D=$ $=$
$E=$ \qquad
4. $x^{2}+y^{2}+8 x+12 y+27=0$

- Ex 7A: 7, 8
$D=$ \qquad
$E=$ \qquad
$F=$ \qquad

Radius $=$
5. $4 x-6 y-x^{2}-y^{2}+3=0$
$D=$
$E=$
$F=$ \qquad
6. $2 x^{2}+2 y^{2}=34-32 x$
$D=$ \qquad
$E=$ \qquad
$F=$ \qquad
7. Find the area of the circle $x^{2}+y^{2}+8 y+7=0$ in terms of π.

8. Find the circumference of the circle $x^{2}+y^{2}+2 x-14 y-14=0$ in terms of π.
\rightarrow Ex 7A: 15
$D=$
$E=$
$F=$

吕Level Up Question令

9. The circle $x^{2}+y^{2}+4 x-2 y-20=0$ with centre at G passes through points P and Q.
(a) Find the coordinates of G.

Explain (b) Mandy claims that if $P Q=\sqrt{26}$, then $\triangle G P Q$ is an equilateral triangle. Do you agree? Explain your answer.

Objective: To determine the nature of a circle from its equation and the position of a point relative to a circle.

Nature of a Circle

Consider a circle $x^{2}+y^{2}+D x+E y+F=0$.
(a) $\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F>0$
(b) $\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F=0$
(c) $\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F<0$
A real circle
A point circle
An imaginary circle

Instant Example 1

Does each of the following equations represent a real circle, a point circle or an imaginary circle?
(a) $(x-1)^{2}+(y+3)^{2}+15=0$
(b) $x^{2}+y^{2}-4 x-10 y+29=0$
(a) $(x-1)^{2}+(y+3)^{2}+15=0$
$(x-1)^{2}+(y+3)^{2}=-15$
$\because \quad$ The R.H.S. of the equation $=-15<0$
\therefore The equation represents an imaginary circle.
(b) $\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F=\left(\frac{-4}{2}\right)^{2}+\left(\frac{-10}{2}\right)^{2}-29$ $=0$
\therefore The equation represents a point circle.

Instant Practice 1

Does each of the following equations represent a real circle, a point circle or an imaginary circle?
(a) $3(x+9)^{2}+3(y-2)^{2}=12$
(b) $x^{2}+y^{2}+2 x-14 y+50=0$
(a) $3(x+9)^{2}+3(y-2)^{2}=12$

$$
(x+9)^{2}+(y-2)^{2}=(\quad)
$$

$\because \quad$ The R.H.S. of the equation

Convert the coefficients of x^{2} and y^{2} to 1 .

$$
=(\quad)(>/=/<) 0
$$

\therefore The equation represents
(b) $\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F=()^{2}+()^{2}-(\quad)$ $=(\quad)$
\therefore The equation represents

Does each of the following equations represent a real circle, a point circle or an imaginary circle? [Nos. 1-4]

1. $5(x-6)^{2}+5(y-1)^{2}=0$
2. $4(x+3)^{2}+4(y+7)^{2}+36=0$
\rightarrow Ex 7A: 9
3. $x^{2}+y^{2}-x+3 y+3=0$

$$
\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F
$$

$D=$ \qquad

$$
E=
$$

\qquad
$F=$ \qquad
4. $2 x^{2}+2 y^{2}+24 x+8 y+68=0$

Position of a Point Relative to a Circle

Suppose the distance between any point P and the centre G is d and the radius is r.
(a) P lies outside the circle.
(b) P lies on the circle.
(c) P lies inside the circle.
$d>r$
$d=r$
$d<r$

Instant Example 2

Determine whether $P(-3,0)$ lies inside, outside or on the circle $(x+3)^{2}+(y-5)^{2}=36$.

$$
(x+3)^{2}+(y-5)^{2}=36
$$

$[x-(-3)]^{2}+(y-5)^{2}=6^{2}$
Coordinates of the centre $=(-3,5)$
lie on the same
vertical line.
Radius $=6$
Distance between P and the centre $=5-0$

$$
=5<6
$$

$\therefore \quad$ Point P lies inside the circle.

Instant Practice 2

Determine whether $Q(3,-4)$ lies inside, outside or on the circle $(x-1)^{2}+(y+4)^{2}=4$.

$$
\begin{aligned}
(x-1)^{2}+(y+4)^{2} & =4 \\
)^{2}+[\quad]^{2} & =(\quad)^{2}
\end{aligned}
$$

Coordinates of the centre $=(\quad, \quad)$
Radius $=(\quad)$
Distance between Q and the centre $=(\quad)-(\quad)$

$$
=(\quad)
$$

$\therefore \quad$ Point Q lies
6. Determine whether $S(-6,2)$ lies inside, outside or on the circle $(x+8)^{2}+(y+2)^{2}=32$.
\rightarrow Ex 7A: 10-12

食Level Up Question食

7. Lily claims that circle $A:(x-11)^{2}+(y+9)^{2}=100$ lies outside circle $B:(x-4)^{2}+(y-15)^{2}=14^{2}$. Explain

Do you agree? Explain your answer.

7 Equations of Circles

Consolidation Exercise 7A

[In this exercise, leave the radical sign ' $\sqrt{ }$ ' in the answers if necessary.]

Level 1

1. Using the following centres G and radii r, write down the equations of circles in the standard form.
(a) Coordinates of $G=(0,3), r=2$
(b) Coordinates of $G=(4,5), r=6$
(c) Coordinates of $G=(-2,-7), r=5$
(d) Coordinates of $G=(-1,4), r=\sqrt{5}$
(e) Coordinates of $G=(-6,1), r=\frac{1}{4}$
(f) Coordinates of $G=(5,-2), r=\frac{3}{2}$
2. For each of the following figures, write down the equation of the circle in the standard form.
(a)

(b)

(c)

3. For each of the following, find the equation of the circle in the standard form.
(a)

(b)

(c)

4. For each of the following, G is the centre of the circle. Write down the equation of the circle in the standard form.
(a)

(b)

(c)

5. For each of the following equations of circles, write down the coordinates of the centre and the radius of the circle.
(a) $x^{2}+y^{2}=64$
(b) $(x-6)^{2}+y^{2}=4$
(c) $(x+1)^{2}+(y-5)^{2}=9$
(d) $(x-3)^{2}+(y+2)^{2}=225$
(e) $4(x+5)^{2}+4 y^{2}=36$
(f) $3(x-2)^{2}+3(y+8)^{2}=87$
6. Convert the following equations of circles into the general form.
(a) $(x+3)^{2}+(y+2)^{2}=25$
(b) $(x+7)^{2}+(y-4)^{2}=16$
(c) $(x-9)^{2}+y^{2}=81$
(d) $(x-5)^{2}+(y+5)^{2}=60$
7. For each of the following equations of circles in the general form, find the coordinates of the centre and the radius of the circle.
(a) $x^{2}+y^{2}-6 x+8 y=0$
(b) $x^{2}+y^{2}-4 x-2 y+1=0$
(c) $x^{2}+y^{2}+12 x+8 y-29=0$
(d) $x^{2}+y^{2}+10 x-2 y+5=0$
8. Find the coordinates of the centre and the radius of each of the following circles.
(a) $y^{2}+4 x=6 y-x^{2}+3$
(b) $\frac{x^{2}+y^{2}}{3}=2 x-4 y+12$
(c) $7 x^{2}+7 y^{2}-28 x=49$
(d) $12 y+6 x-9=3 x^{2}+3 y^{2}$
9. Does each of the following equations represent a real circle, a point circle or an imaginary circle?
(a) $(x-3)^{2}+\left(y+\frac{2}{3}\right)^{2}-3=0$
(b) $5(x-4)^{2}+5(y+6)^{2}=0$
(c) $x^{2}+y^{2}-4 x-8 y+21=0$
(d) $3 x^{2}+3 y^{2}-18 x+24 y-33=0$
10. Consider the circle $x^{2}+y^{2}+2 x+6 y-6=0$.
(a) Write down the coordinates of the centre and the radius of the circle.

Explain (b) Is $A(0,1)$ a point outside the circle? Explain your answer.
11. Using the following centres G and radii r, determine whether point P lies inside, outside or on the circle.
(a) Coordinates of $G=(6,3), r=7$, coordinates of $P=(6,-4)$
(b) Coordinates of $G=(-5,2), r=8$, coordinates of $P=(5,2)$
(c) Coordinates of $G=(-4,-3), r=11$, coordinates of $P=(4,3)$
(d) Coordinates of $G=(1,-2), r=4$, coordinates of $P=(-2,1)$
12. In each of the following, determine whether point P lies inside, outside or on the circle.
(a) Coordinates of $P=(4,2)$, equation of the circle: $\left(x-\frac{3}{2}\right)^{2}+(y+4)^{2}=36$
(b) Coordinates of $P=(-12,3)$, equation of the circle: $x^{2}+y^{2}+8 x-18 y-3=0$
(c) Coordinates of $P=\left(\frac{1}{2},-1\right)$, equation of the circle: $x^{2}+y^{2}+2 x+6 y-6=0$
13. Consider the circle $x^{2}+(y+3)^{2}=16$. If $Q(0, a)$ is a point outside the circle and $a<-3$, find the range of values of a.
14. Consider the circle $(x+2)^{2}+(y-3)^{2}=25$. If $Q(b, 3)$ is a point inside the circle and $b>0$, find the range of values of b.
15. The equation of circle G is $x^{2}+y^{2}+6 x-4 y-4=0$. The equation of straight line L is $2 x+y+4=0$.
(a) Write down the coordinates of the centre and the radius of the circle.

Explain (b) Does L pass through the centre of G ? Explain your answer.
16. The equation of a circle is $2\left(x-\frac{9}{2}\right)^{2}+2(y-9)^{2}=16 k^{2}-200 k+600$, where k is a constant. Find the value of k such that the equation represents a point circle.
17. Consider the circle $2 x^{2}+2 y^{2}+20 x-40 y-38=0$. Find the area and the perimeter of the circle in terms of π.
$8<$ 18. The equation $\left(x-\frac{7}{2}\right)^{2}+(y+4)^{2}=k^{2}+6 k+5$ represents a real circle. Find the range of values of k.

Level 2

19. In the figure, the circle with centre at $(6,3)$ passes through $(6,-9)$. Find the equation of the circle in the general form.

20. In the figure, the circle with centre at $(-5,4)$ passes through $(-18,4)$. Find the equation of the circle in the general form.
21. In the figure, the radius of the circle is 15 and the centre lies on the y -
 axis.
(a) Find the coordinates of the centre of the circle.
(b) Find the equation of the circle in the standard form.

$8<22$. In the figure, the coordinates of the centre of the circle are $(-5,-6)$. The y axis is a tangent to the circle.
(a) Find the radius of the circle.
(b) Find the equation of the circle in the standard form.
(c) Does $P(-8,-10)$ lie inside, outside or on the circle?

22. In the figure, the equation of the circle is $(x-4)^{2}+(y-7)^{2}=25$. The circle passes through A, B and C, where A lies on the y-axis. $A B$ is a diameter of the circle.
(a) Find the coordinates of the centre and the radius of the circle.
(b) Find the coordinates of A and B.
(c) If $B C$ is a vertical line, find the area of $\triangle A B C$.

23. Consider the circle $x^{2}+y^{2}-8 x+6 y-5=0$.
(a) Find the coordinates of the centre and the radius of the circle.
(b) Find the equation of the straight line passing through the centre of the circle and $(-3,2)$.
24. Consider the circle $2 x^{2}+2 y^{2}+20 x+4 y-46=0$.
(a) Find the coordinates of the centre G.
(b) Find the equation of the straight line passing through $B(3,1)$ and perpendicular to $B G$.
(c) Find the equation of the straight line passing through $C(-2,6)$ and parallel to $O G$, where O is the origin.
25. In each of the following, find the radius of the circle.
(a) $P(6,-8)$ is a point on the circle $x^{2}+y^{2}-7 x+2 k y+6=0$, where k is a constant.
(b) $Q\left(-\frac{1}{2},-\frac{1}{2}\right)$ is a point on the circle $2 x^{2}+2 y^{2}+k x-10 y-5=0$, where k is a constant.
26. Consider the circle $x^{2}+y^{2}+12 x-30 y-28=0$. Determine whether each of the following points lies inside, outside or on the circle.
(a) The origin O
(b) $A(-14,0)$
(c) $B(2,-2)$
27. It is given that $x^{2}+y^{2}-6 x+18 y-2 k+3=0$ is a real circle, where k is a positive constant.
(a) Find the radius of the circle in terms of k.
(b) If the origin lies outside the circle, find the range of values of k.
28. In each of the following, find the range of values of k.
(a) The circle $x^{2}+y^{2}+4 x-18 y+5 k=0$ is a real circle.
$8<$ (b) The circle $2 x^{2}+2 y^{2}-6 x+3 k y+\frac{25}{2}=0$ is an imaginary circle.
29. Consider the circle $x^{2}+y^{2}+k x-4 y-16=0$. If the area of the circle is larger than 120π, find the range of values of k.
30. Consider the circle $x^{2}+y^{2}+26 x-18 y-39=0$.
(a) Find the coordinates of the centre and the radius of the circle.
(b) If $(-13, k)$ is a point outside the circle, find the range of values of k in each of the following cases.
(i) $k>9$
(ii) $k<9$
31. Consider the circle $x^{2}+y^{2}-18 x-22 y-23=0$.
(a) Find the coordinates of the centre and the radius of the circle.
$\xrightarrow{\text { Explain }} \mathbf{(b)}$ If both $(k, 11)$ and $(9, k)$ are points inside the circle, how many possible positive integral values of k are there? Explain your answer.
32. Consider the circle $3 x^{2}+3 y^{2}+15 x-6 y-15=0$ and the two points $C(-2,-2)$ and $D(0,3)$.
(a) Determine whether the line segment joining C and D is inside the circle.
(b) Find the equation of the straight line passing through the centre of the circle and perpendicular to $C D$.
*34. Consider the circle $C: x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0$, where $a>b>0$.
$\xrightarrow{\text { Explain }}(\mathrm{a})$ Is C a real circle? Explain your answer.
$\xrightarrow{\text { Explain }}(\mathbf{b})$ Does $(-2 a, 2 b)$ lie inside the circle? Explain your answer.
(c) Show that C lies on the left of the y-axis.
*35. In the figure, $\triangle A B C$ is a right-angled triangle, where $\angle A B C=90^{\circ} . D$ is a point on $A C$ such that $B D \perp A C$.
(a) Prove that $\triangle A B D \sim \triangle B C D$.
(b) Prove that $B D^{2}=A D \times C D$.

(c) A rectangular coordinate system is introduced to the figure so that the coordinates of A and D are $(0,0)$ and $(12,9)$ respectively, and B lies above the x-axis. It is given that the equation of the circle passing through A, B and D is $2 x^{2}+2 y^{2}-15 x-30 y=0$.
(i) Find the coordinates of B.
(ii) Using the result of (b), find $A D: C D$.

8* 36. In the figure, the curve $C: y=a\left(x^{2}-26 x+h\right)$ cuts the x-axis at $A\left(x_{1}, 0\right)$ and $B\left(x_{2}, 0\right)$, where $x_{1}<x_{2}, a>0$ and $0<h<169$.
(a) Find the equation of the perpendicular bisector of $A B$.
(b) Suppose P is a point on quadrant I such that $A P=B P$. Let C^{\prime} be the inscribed circle of $\triangle P A B$ with radius k.
(i) Find the coordinates of the in-centre of $\triangle P A B$ in terms of k.
(ii) If $k=5$ and $A B=16$, find the equation of C^{\prime} and $\angle P A B$.

(Give the answers correct to 3 significant figures if necessary.)

Answers

Consolidation Exercise 7A

1. (a) $x^{2}+(y-3)^{2}=4$
(b) $(x-4)^{2}+(y-5)^{2}=36$
(c) $(x+2)^{2}+(y+7)^{2}=25$
(d) $(x+1)^{2}+(y-4)^{2}=5$
(e) $(x+6)^{2}+(y-1)^{2}=\frac{1}{16}$
(f) $(x-5)^{2}+(y+2)^{2}=\frac{9}{4}$
2. (a) $(x+4)^{2}+y^{2}=81$
(b) $(x-6)^{2}+(y-3)^{2}=49$
(c) $(x+3)^{2}+(y+2)^{2}=13$
3. (a) $x^{2}+y^{2}=16$
(b) $(x-9)^{2}+y^{2}=225$
(c) $x^{2}+(y+2)^{2}=\frac{49}{4}$
4. (a) $(x-8)^{2}+(y+4)^{2}=121$
(b) $(x+6)^{2}+(y+3)^{2}=256$
(c) $(x-5)^{2}+(y-7)^{2}=169$
5. (a) centre: $(0,0)$, radius: 8
(b) centre: $(6,0)$, radius: 2
(c) centre: $(-1,5)$, radius: 3
(d) centre: $(3,-2)$, radius: 15
(e) centre: $(-5,0)$, radius: 3
(f) centre: $(2,-8)$, radius: $\sqrt{29}$
6. (a) $x^{2}+y^{2}+6 x+4 y-12=0$
(b) $x^{2}+y^{2}+14 x-8 y+49=0$
(c) $x^{2}+y^{2}-18 x=0$
(d) $x^{2}+y^{2}-10 x+10 y-10=0$
7. (a) centre: $(3,-4)$, radius: 5
(b) centre: $(2,1)$, radius: 2
(c) centre: $(-6,-4)$, radius: 9
(d) centre: $(-5,1)$, radius: $\sqrt{21}$
8. (a) centre: $(-2,3)$, radius: 4
(b) centre: $(3,-6)$, radius: 9
(c) centre: $(2,0)$, radius: $\sqrt{11}$
(d) centre: $(1,2)$, radius: $\sqrt{2}$
9. (a) a real circle
(b) a point circle
(c) an imaginary circle
(d) a real circle
10. (a) centre: $(-1,-3)$, radius: 4
(b) yes
11. (a) on the circle
(b) outside the circle
(c) inside the circle
(d) outside the circle
12. (a) outside the circle
(b) on the circle
(c) inside the circle
13. $a<-7$
14. $0<b<3$
15. (a) centre: $(-3,2)$, radius: $\sqrt{17}$
(b) yes
16. $5, \frac{15}{2}$
17. area: 144π, perimeter: 24π
18. $k<-5$ or $k>-1$
19. $x^{2}+y^{2}-12 x-6 y-99=0$
20. $x^{2}+y^{2}+10 x-8 y-128=0$
21. (a) $(0,-3)$
(b) $x^{2}+(y+3)^{2}=225$
22. (a) 5
(b) $(x+5)^{2}+(y+6)^{2}=25$
(c) on the circle
23. (a) centre: $(4,7)$, radius: 5
(b) $A:(0,10), B:(8,4)$
(c) 24
24. (a) centre: $(4,-3)$, radius: $\sqrt{30}$
(b) $5 x+7 y+1=0$
25. (a) $(-5,-1)$
(b) $4 x+y-13=0$
(c) $x-5 y+32=0$
26. (a) $\sqrt{\frac{89}{4}}\left(\right.$ or $\left.\frac{\sqrt{89}}{2}\right)$
(b) 3
27. (a) inside the circle
(b) on the circle
(c) outside the circle
28. (a) $\sqrt{2 k+87}$
(b) $0<k<\frac{3}{2}$
29. (a) $k<17$
(b) $-\frac{8}{3}<k<\frac{8}{3}$
30. $k<-20$ or $k>20$
31. (a) centre: $(-13,9)$, radius: 17
(b) (i) $k>26$
(ii) $k<-8$
32. (a) centre: $(9,11)$, radius: 15
(b) 23
33. (a) yes
(b) $2 x+5 y=0$
34. (a) yes
(b) no
35. (c) (i) $\left(\frac{15}{2}, 15\right)$
(ii) $4: 1$
36. (a) $x=13$
(b) (i) $(13, k)$
(ii) $C^{\prime}: x^{2}+y^{2}-26 x-10 y+169=0$, $\angle P A B=64.0^{\circ}$

Maths Corner Exercise 7B Multiple Choice	Complete and Checked Problems encountered Skipped	Teacher's Signature	$\overline{(\quad)}$
E-Class Multiple Choice Self-Test	\bigcirc Complete and Checked Problems encountered Skipped	Mark:	

Objective: To find the equations of circles from different given conditions.

Equations of Circles from Different Given Conditions

(a) If the coordinates of the centre and the radius of a circle are given, we can write down the equation of the circle in the standard form.
(b) In other given conditions, we can find the equation of the circle by setting up simultaneous equations or using the geometric properties of circles.

Instant Example 1

In the figure, the circle with centre $A(1,3)$ passes through $(0,0)$. Find the equation of the circle in the standard form.

$$
\begin{aligned}
\text { Radius } & =O A \\
& =\sqrt{(1-0)^{2}+(3-0)^{2}} \\
& =\sqrt{10}
\end{aligned}
$$

$\therefore \quad$ The equation of the circle is

$$
\begin{aligned}
& (x-1)^{2}+(y-3)^{2}=(\sqrt{10})^{2} \\
& (x-1)^{2}+(y-3)^{2}=10
\end{aligned}
$$

Instant Practice 1

In the figure, find the equation of the circle with centre at B in the standard form.

Radius
$=$ distance between B and (,)

$=\sqrt{[(\quad)-(\quad)]^{2}+[(\quad)-(\quad)]^{2}}$
$=(\quad)$
$\therefore \quad$ The equation of the circle is

$$
[x-(\quad)]^{2}+[y-(\quad)]^{2}=(\quad)^{2}
$$

1.

In the figure, the circle with centre at $G(5,-1)$ passes through $P(4,6)$. Find the equation of the circle in the standard form.

Radius $=P G$

$$
=\sqrt{(\quad)^{2}+(\quad)^{2}}
$$

2.

In the figure, $A B$ is a diameter of the circle.
(a) Find the coordinates of the centre.
(b) Find the equation of the circle in the standard form.
\rightarrow Ex 7B: 1-5
(a) Coordinates of the centre $=$

For $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$,
coordinates of the mid-point of $P Q$ $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ $=\sqrt{(\quad)^{2}+(\quad)^{2}}$

Instant Example 2

In the figure, G is the centre of circle $C . P(-5,5)$ is the mid-point of $A B$ and $A P=P B=12$. Find the equation of C in the standard form.
$P G=\sqrt{[-2-(-5)]^{2}+(1-5)^{2}}$

$$
=5
$$

$\because A P=P B$
$\therefore \quad P G \perp A B$
$A G^{2}=A P^{2}+P G^{2}$
$A G=\sqrt{12^{2}+5^{2}}$

$$
=13
$$

\therefore The equation of C is

$$
\begin{aligned}
{[x-(-2)]^{2}+(y-1)^{2} } & =13^{2} \\
(x+2)^{2}+(y-1)^{2} & =169
\end{aligned}
$$

Instant Practice 2

In the figure, G is the centre of circle C and $M G \perp A B$. Find the equation of C in the standard form.
$\because \quad M G \perp(\quad)$
$\therefore \quad M B=\frac{1}{2}(\quad)$
$=\frac{1}{2} \times(\quad)$
$=(\quad)$

$M G=(\quad)$
$B G^{2}=(\quad)^{2}+(\quad)^{2}$
$B G=\sqrt{(\quad)^{2}+(\quad)^{2}}=(\quad)$
\therefore The equation of C is

$$
(\quad)^{2}+(\quad)^{2}=(\quad)^{2}
$$

\qquad
4. In the figure, G is the centre of circle C and $A B=14$. Find the equation of C in the standard form.

食Level Up Question令

5. In the figure, G is the centre of circle $C . M(2,4)$ is the mid-point of chord $A B$. Find the equation of C in the standard form.

7 Equations of Circles

Consolidation Exercise 7B

[In this exercise, leave the radical sign ' $\sqrt{ }$ ' in the answers if necessary.]

Level 1

1. Find the equation of each of the following circles in the standard form.
(a) Centre is at $(-3,6)$ and diameter is 6 .
(b) Centre is at $(7,-6)$ and diameter is 16 .
(c) Centre is at $(-4,-5)$ and diameter is 7 .
2. In each of the following figures, G is the centre. Find the equation of each circle in the standard form.
(a)

(b)

(c)

3. Find the equation of each of the following circles in the standard form.
(a) A circle with centre at $(1,4)$ passes through $(-1,8)$.
(b) A circle with centre at $(-5,-17)$ passes through $(7,-1)$.
(c) A circle with centre at $(-6,13)$ intersects the y-axis at $(0,5)$.

In each of the following figures, $A B$ is a diameter of the circle. Find the equation of each circle in the standard form. [Nos. 4-5]
4.

5.

6. In the figure, $A B$ is a diameter of the circle and the centre is at $(4,0)$. $A D C$ is a horizontal line. $B C=25$ and $C D=20$.
(a) Find the length of $A B$.
(b) Find the equation of the circle in the standard form.

7. In the figure, G is the centre of the circle. $M(-3,0)$ is the mid-point of chord $P Q . G M=4$ and $P Q=9$.
(a) Find the lengths of $P M$ and $P G$.
(b) Find the equation of the circle in the standard form.

8. In the figure, $G(6,4)$ is the centre of the circle. $M(14,9)$ is the midpoint of chord $P Q$ and $P M=5$.
(a) Find the lengths of $G M$ and $P G$.
(b) Find the equation of the circle in the standard form.

9. A circle with centre at $(3,-2)$ passes through $A(-5,4)$.
(a) Find the equation of the circle in the standard form.
(b) Does $B(1,7)$ lie inside or outside the circle?
10. $P(-7,10)$ and $Q(3,-4)$ are the end points of a diameter of a circle.
(a) Find the equation of the circle in the standard form.
(b) Determine whether each of the following points lies inside, outside or on the circle.
(i) $R(-9,9)$
(ii) $S(5,-2)$
11. In the figure, the centre of the circle is at $G(-7,4)$. The circle intersects the x-axis at A and B, where $A B=18 . P$ is a point on $A B$ such that $G P \perp A B$.
(a) Find the equation of the circle in the standard form.
(b) Does $C(-4,13)$ lie inside the circle?

12. In the figure, $G(8,6)$ is the centre. The straight line $x=12$ cuts the circle at P and Q, where $P Q=6$.
(a) Find the equation of the circle in the standard form.
(b) Is $(5,10)$ a point on the circle?

$8<$ 13. The centre of circle C lies in quadrant IV. C touches the negative y-axis, and touches the positive x axis at $(13,0)$.
(a) Write down the coordinates of the centre of C.
(b) Find the equation of the circle in the standard form.

Level 2

14. The centre of a circle is at $(-3,4)$ and the diameter is 20 .
(a) Find the equation of the circle in the standard form and then convert it into the general form.
(b) If $(k,-2)$ lies on the circle, find all the possible values of k.
15. In the figure, the centre of the circle is at $(-9,-7)$ and the area is 225π.
(a) Find the radius of the circle.
(b) Write down the equation of the circle in the standard form and then convert it into the general form.
Explain (c) If $(-18, k)$ lies on the circle, where $k>0$, does $(-3 k, 7)$ lie inside the circle? Explain your answer.

16. The centre of circle C_{1} is at $(4,-2)$. The equation of circle C_{2} is $4 x^{2}+4 y^{2}-32 x+16 y-20=0$.
(a) Are C_{1} and C_{2} two concentric circles? Explain your answer.
(b) If the radius of C_{1} is 4 times that of C_{2}, find the equation of C_{1} in the general form.
17. In the figure, the centre of circle C_{1} is at $(-2,2)$. The equation of circle C_{2} is $x^{2}+y^{2}-2 x+4 y-44=0$. The radius of C_{1} is shorter than that of C_{2} by 2 units.
(a) Find the equation of C_{1} in the general form.
(b) Determine whether C_{1} passes through the centre of C_{2}.
(c) Does $(3,5)$ lie outside both C_{1} and C_{2} ?

18. In the figure, the circle passes through $(2,-17)$ and intersects the positive x-axis at $(9,0)$. The coordinates of the centre of the circle are ($k,-5$).
(a) Find the value of k.
(b) Find the equation of the circle in the general form.

19. In the figure, the circle passes through two points $A(6,2)$ and $B(-8$, $-12)$. Its centre lies on the y-axis.
(a) Find the coordinates of the centre of the circle.
(b) Find the radius of the circle.
$\xrightarrow{\text { Explain }}$
(c) Is $A B$ a diameter of the circle? Explain your answer.
(d) Find the equation of the circle in the general form.

20. In each of the following, find the equation of the circle passing through A, B and C in the general form.
(a) $A(0,0), B(0,2), C(8,0)$
(b) $A(9,-1), B(4,4), C(4,-2)$
(c) $A(-3,-2), B(-4,-5), C(1,0)$
21. The vertices of a triangle are $A(-1,11), B(13,13)$ and $C(15,-1)$.
$\xrightarrow{\text { Explain }}$
(a) Is $\triangle A B C$ a right-angled triangle? Explain your answer.
(b) Find the equation of the circumcircle of $\triangle A B C$ in the general form.
$\xrightarrow{\text { Explain }}$ (c) If the coordinates of D are $(1,-3)$, do A, B, C and D lie on the same circle? Explain your answer.
22. $P(-8,-3), Q(0,-7)$ and $R(8,9)$ are three points in a rectangular coordinate plane.
(a) Find the equation of the circle passing through P, Q and R in the general form.
(b) The coordinates of S are $(k, 3) . P, Q, R$ and S are the vertices of a cyclic quadrilateral.
(i) Find the possible values of k.
(ii) For each value of k obtained in (b)(i), find the equation of circle C with $P S$ as diameter in the general form.
23. In the figure, circle C passes through two points $P(-8,0)$ and $Q(-5,9)$. The centre of C lies on the straight line $L: x+y=1$.
(a) Find the coordinates of the centre of C.
(b) Find the equation of C in the general form.

24. The slope of a straight line L is $-5 . L$ passes through $R(3,-6)$ and cuts the y-axis at a point Q. A circle C passes through two points $P(-4,3)$ and Q. The centre G of the circle C lies on L.
(a) Find the equation of L.
(b) (i) Find the coordinates of G.
(ii) Find the equation of C in the general form.
(c) Find the area of the minor sector GPQ in terms of π.
25. Two circles C_{1} and C_{2} touch each other internally at $(0,6)$. The equation of C_{1} is $x^{2}+y^{2}-24 x-12 y+36=0$. In each of the following given conditions, find the equation of C_{2} in the general form.
(a) C_{2} passes through the centre of C_{1}.
(b) The radius of C_{1} is 4 times that of C_{2}.
(c) The ratio of the area of C_{1} to that of C_{2} is $9: 4$.
26. In the figure, $A B C D$ is a square. The coordinates of A and B are $(-7,-4)$ and $(0,-3)$ respectively. The centre of the circumcircle of the square lies on the negative x-axis.
(a) Find the equation of the circumcircle of the square in the general form.
(b) Find the coordinates of C and D.
$8<$ (c) Find the equation of the inscribed circle of the square in the
 general form.
*27. In the figure, the circle passes through three points $A(8,6), B$ and O, where $A B=O B, A B \perp O B$ and B lies below the x-axis. L is the perpendicular bisector of $O A$.
(a) Find the equation of the circle in the general form.
(b) Find the coordinates of B.
$\mathcal{S <}$ (c) L cuts the y-axis at a point C.

(i) Find the coordinates of the orthocentre of $\triangle O A C$.

Explain (ii) Does the in-centre of $\triangle O A C$ lie on L ? Explain your answer.
*28. In the figure, the straight line $L_{1}: 2 x-y-34=0$ and the circle C intersect at $P(9 k, k)$ and $Q(7 k,-3 k)$.
(a) Find the coordinates of P and Q.
(b) The straight line L_{2} is the perpendicular bisector of $P Q$. The centre G of circle C lies on the left of L_{1}. The distance between G and the mid-point of $P Q$ is $\sqrt{80}$.
(i) Find the equation of L_{2}.

(ii) Find the coordinates of G.
(iii) Find the equation of C in the general form.
$8<$ (c) Another circle C_{1} with radius m has the same centre as C, where $0<m<10$. Using the section formula, express the coordinates of the point on C_{1} which is nearest to Q in terms of m.
*29. In the figure, $A B$ is a diameter of the circle and a median of $\triangle O A C$. It is given that $A C=\sqrt{5} O A$.

(b) A rectangular coordinate system is introduced to the figure so that the
 coordinates of O and C are $(0,0)$ and $(14,-2)$ respectively.
(i) Find the coordinates of A and B.
(ii) Find the equation of the circle.
$8<$ (iii) Find the coordinates of the circumcentre of $\triangle O A C$.
\mathcal{S}° 30. In the figure, $O B$ is a diameter of the circle. Chord $A C$ cuts $O B$ at F. $A C$ is produced to D such that $\angle A D O=\angle B O C$. E is a point outside the circle such that $A E \perp D E$.
(a) (i) Prove that $\triangle B C O \sim \triangle A O D$.
(ii) Prove that A, D, E and O are concyclic.

(b) A rectangular coordinate system is introduced to the figure so that the coordinates of O, C and D are $(0,0),(-20,0)$ and $\left(-\frac{45}{2},-\frac{5}{2}\right)$ respectively. It is given that $B C=16$.
(i) Find the coordinates of B.
(ii) Find the equation of the circle $A B C O$.
(iii) Find the equation of the circle $A D E O$.

Answers

Consolidation Exercise 7B

1. (a) $(x+3)^{2}+(y-6)^{2}=9$
(b) $(x-7)^{2}+(y+6)^{2}=64$
(c) $(x+4)^{2}+(y+5)^{2}=\frac{49}{4}$
2. (a) $(x-5)^{2}+(y+4)^{2}=106$
(b) $(x-2)^{2}+(y-1)^{2}=25$
(c) $(x+9)^{2}+(y+3)^{2}=225$
3. (a) $(x-1)^{2}+(y-4)^{2}=20$
(b) $(x+5)^{2}+(y+17)^{2}=400$
(c) $(x+6)^{2}+(y-13)^{2}=100$
4. $(x+6)^{2}+(y+3)^{2}=225$
5. $(x-5)^{2}+(y-1)^{2}=20$
6. (a) 17
(b) $(x-4)^{2}+y^{2}=\frac{289}{4}$
7. (a) $P M=\frac{9}{2}, P G=\sqrt{\frac{145}{4}}\left(\right.$ or $\left.\frac{\sqrt{145}}{2}\right)$
(b) $(x+3)^{2}+(y-4)^{2}=\frac{145}{4}$
8. (a) $G M=\sqrt{89}, P G=\sqrt{114}$
(b) $(x-6)^{2}+(y-4)^{2}=114$
9. (a) $(x-3)^{2}+(y+2)^{2}=100$
(b) inside the circle
10. (a) $(x+2)^{2}+(y-3)^{2}=74$
(b) (i) outside the circle
(ii) on the circle
11. (a) $(x+7)^{2}+(y-4)^{2}=97$
(b) yes
12. (a) $(x-8)^{2}+(y-6)^{2}=25$
(b) yes
13. (a) $(13,-13)$
(b) $(x-13)^{2}+(y+13)^{2}=169$
14. (a) $(x+3)^{2}+(y-4)^{2}=100$,
$x^{2}+y^{2}+6 x-8 y-75=0$
(b) $-11,5$
15. (a) 15
(b) $(x+9)^{2}+(y+7)^{2}=225$, $x^{2}+y^{2}+18 x+14 y-95=0$
16. (a) yes
(b) $x^{2}+y^{2}-8 x+4 y-380=0$
17. (a) $x^{2}+y^{2}+4 x-4 y-17=0$
(b) yes
(c) yes
18. (a) -3
(b) $x^{2}+y^{2}+6 x+10 y-135=0$
19. (a) $(0,-6)$
(b) 10
(c) no
(d) $x^{2}+y^{2}+12 y-64=0$
20. (a) $x^{2}+y^{2}-8 x-2 y=0$
(b) $x^{2}+y^{2}-12 x-2 y+24=0$
(c) $x^{2}+y^{2}-2 x+10 y+1=0$
21. (a) yes
(b) $x^{2}+y^{2}-14 x-10 y-26=0$
(c) yes
22. (a) $x^{2}+y^{2}-6 y-91=0$
(b) (i) $10,-10$
(ii) when $k=10: x^{2}+y^{2}-2 x-89=0$, when $k=-10: x^{2}+y^{2}+18 x+71=$ 0
23. (a) $(-2,3)$
(b) $x^{2}+y^{2}+4 x-6 y-32=0$
24. (a) $5 x+y-9=0$
(b) (i) $(1,4)$
(ii) $x^{2}+y^{2}-2 x-8 y-9=0$
(c) $\frac{13 \pi}{2}$
25. (a) $x^{2}+y^{2}-12 x-12 y+36=0$
(b) $x^{2}+y^{2}-6 x-12 y+36=0$
(c) $x^{2}+y^{2}-16 x-12 y+36=0$
26. (a) $x^{2}+y^{2}+8 x-9=0$
(b) $C:(-1,4), D:(-8,3)$
(c) $2 x^{2}+2 y^{2}+16 x+7=0$
27. (a) $x^{2}+y^{2}-8 x-6 y=0$
(b) $(7,-1)$
(c) no
(c) (i) $\left(\frac{7}{4}, 6\right)$
(ii) yes
28. (a) P : $(18,2), Q:(14,-6)$
(b) (i) $x+2 y-12=0$
(ii) $(8,2)$
(iii) $x^{2}+y^{2}-16 x-4 y-32=0$
(c) $\left(\frac{40+3 m}{5}, \frac{10-4 m}{5}\right)$
29. (a) yes
(b) (i) $A:(-1,-7), B:(7,-1)$
(ii) $x^{2}+y^{2}-6 x+8 y=0$
(iii) $\left(\frac{13}{2},-\frac{9}{2}\right)$
30. (b) (i) $(-20,16)$
(ii) $x^{2}+y^{2}+20 x-16 y=0$
(iii) $2 x^{2}+2 y^{2}+49 x-31 y=0$

5B Lesson Worksheet 7.3A

Objective: To understand the possible intersection of a straight line and a circle, and find the number of points of intersection.

Number of Points of Intersection

Straight line $L: y=m x+c$
Circle $C: x^{2}+y^{2}+D x+E y+F=0$
By substituting (1) into (2), we can obtain a quadratic equation in x.

Discriminant (Δ) of the quadratic equation	$\Delta>0$	$\Delta=0$	$\Delta<0$
Number of points of intersection	2	1	0

Instant Example 1

Find the number of points of intersection of the straight line $L: 2 x-y+3=0$ and the circle
$C: x^{2}+y^{2}+10 x+12=0$.
$\left\{\begin{array}{l}2 x-y+3=0 \ldots \ldots \ldots . \\ x^{2}+y^{2}+10 x+12=0 .\end{array}\right.$
From (1), $y=2 x+3$
Substitute (3) into (2).

$$
\begin{align*}
x^{2}+(2 x+3)^{2}+10 x+12 & =0 \\
x^{2}+4 x^{2}+12 x+9+10 x+12 & =0 \\
5 x^{2}+22 x+21 & =0 \ldots \ldots(4) \tag{4}\\
\text { Discriminant } \Delta \text { of equation (4) } & =22^{2}-4(5)(21) \\
& =64 \\
& >0
\end{align*}
$$

\therefore The number of points of intersection is 2 .

Instant Practice 1

Find the number of points of intersection of the straight line $L: 3 x-y-13=0$ and the circle $C: x^{2}+y^{2}-2 x-9=0$.

$$
\left\{\begin{array}{l}
3 x-y-13=0 \ldots \ldots \tag{1}\\
x^{2}+y^{2}-2 x-9=0
\end{array}\right.
$$

From (1), $y=$ \qquad (3)

Substitute () into (2).

$x^{2}+(\quad)^{2}-2 x-9=0$
\square

——......... (4)

Discriminant Δ of equation (4) $=(\quad)^{2}-4(\quad)(\quad)$ $=(\quad)$
$\therefore \quad$ The number of points of intersection is ().

Find the number of points of intersection of circle C and straight line L in each of the following. [Nos. 1-2]

1. $C: x^{2}+y^{2}+14 x+12 y+17=0, L: y=-4 x$

$$
\left\{\begin{array}{l}
y=-4 x \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}\\
x^{2}+y^{2}+14 x+12 y+17=0
\end{array}\right.
$$

2. $C: x^{2}+y^{2}+9 y+3=0, L: x-2 y+7=0$
\rightarrow Ex 7C: 1-4

Instant Example 2

If the straight line $L: y=x+2$ and the circle
$C: x^{2}+y^{2}+6 y+k=0$ intersect at two points，find the range of values of k ．
$\left\{\begin{array}{l}y=x+2 \ldots \ldots ~\end{array}\right.$
Substitute（1）into（2）．

$$
\begin{array}{r}
x^{2}+(x+2)^{2}+6(x+2)+k=0 \\
x^{2}+x^{2}+4 x+4+6 x+12+k=0 \\
2 x^{2}+10 x+16+k=0 \tag{3}
\end{array}
$$

$\because \quad L$ and C intersect at two points．
\therefore Discriminant Δ of equation（3）>0

$$
\begin{aligned}
& 10^{2}-4(2)(16+k)>0 \\
& 100-128-8 k>0 \\
&-8 k>28 \\
& \text { f direction } \\
& \text { gn. }
\end{aligned}
$$

Note the change of direction of the inequality sign．

3．If the straight line $L: y=x+3$ and the circle $C: x^{2}+y^{2}+k x-7=0$ intersect at one point， find the values of k ．
$\left\{\begin{array}{l}y=x+3 \ldots\end{array}\right.$

Instant Practice 2

If the straight line $L: y=x-1$ and the circle
$C: x^{2}+y^{2}-2 x+k=0$ intersect at two points，find the range of values of k ．
$\left\{\begin{array}{l}y=x-1 \ldots ~\end{array}\right.$
Substitute（1）into（2）．
$x^{2}+(\quad)^{2}-2 x+k=0$
$\because \quad L$ and C intersect at two points．
\therefore Discriminant Δ of equation（3）>0

$$
\begin{array}{rll}
\left(\begin{array}{lll}
)^{2}-4(&)(&)>0 \\
\left(\begin{array}{ll}
(&)-(
\end{array}\right. &)-(&) k>0 \\
& (&) k>(\\
& & k<(
\end{array}\right)
\end{array}
$$

4．If the number of points of intersection of the straight line $L: y=x-2$ and the circle
$C: x^{2}+y^{2}-8 y+k=0$ is at least one，find the range of values of k ．

$$
\text { ーEx 7C: 18, } 19
$$

Intersect at：
（a） 2 points $(\Delta>0)$
（b） 1 point $(\Delta=0)$
（c） 0 point $(\Delta<0)$
（d）at least 1 point $(\Delta \geq 0)$

食Level Up Question令

5．The circle $x^{2}+y^{2}+k x+7 y+4=0$ does not intersect the x－axis．Alan claims that the smallest value of $\xrightarrow{\text { Explain }}$ k is -4 ．Do you agree？Explain your answer．

5B Lesson Worksheet 7.3B

Objective: To find the coordinates of the points of intersection of a straight line and a circle.

Coordinates of the Points of Intersection

To find the coordinates of the points of intersection, we can solve the simultaneous equations representing the straight line L and the circle C.

Instant Example 1

Find the coordinates of the points of intersection of circle C : $x^{2}+y^{2}-4 x-1=0$ and straight line $L: y=x-1$.
$\left\{\begin{array}{l}x^{2}+y^{2}-4 x-1=0 . \\ y=x-1 \ldots \ldots \ldots . .\end{array}\right.$
Substitute (2) into (1).

$$
\begin{aligned}
x^{2}+(x-1)^{2}-4 x-1 & =0 \\
x^{2}+x^{2}-2 x+1-4 x-1 & =0 \\
2 x^{2}-6 x & =0 \\
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0 \text { or } 3
\end{aligned}
$$

When $x=0, y=0-1=-1$.
When $x=3, y=3-1=2$.
\therefore The coordinates of the points of intersection are $(0,-1)$ and $(3,2)$.

Instant Practice 1

Find the coordinates of the points of intersection of circle $C: x^{2}+y^{2}+8 y+11=0$ and straight line $L: x=2 y+13$.
$\left\{\begin{array}{l}x^{2}+y^{2}+8 y+11=0 \\ x=2 y+13 \ldots \ldots \ldots\end{array}\right.$
Substitute () into () .

$$
(\quad)^{2}+y^{2}+8 y+11=0
$$

$(\quad) y^{2}+(\quad) y+(\quad)+y^{2}+8 y+11=0$ $(\quad) y^{2}+(\quad) y+(\quad)=0$ $y^{2}+(\quad) y+(\quad)=0$
$[y+(\quad)]^{2}=0$ $y=(\quad)($

When $y=(\quad), x=2(\quad)+13=(\quad)$.
\therefore The coordinates of the point of intersection are
\qquad).

4 ' L and C have only one point of intersection' means that L is a tangent to C.

Find the coordinates of the points of intersection of circle C and straight line L in each of the following.
[Nos. 1-2]
\rightarrow Ex 7C: 5-8

1. $C: x^{2}+y^{2}-8=0, L: y=x-4$

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-8=0 \tag{1}\\
y=x-4 \ldots \ldots
\end{array}\right.
$$

3. The radius of circle C with centre at $(0,3)$ is $\sqrt{5}$. The equation of the straight line L is $y=x+2$.
(a) Find the equation of C in the general form.
(b) Find the coordinates of the points of intersection of L and C.
4. Circle $C: x^{2}+y^{2}+4 x-6=0$ and straight line $L: x+3 y+2=0$ intersect at P and Q. Find the coordinates of the mid-point of $P Q$.

First find the coordinates of the points of intersection of C and L.

食Level Up Question倉

5. Circle $C: x^{2}+y^{2}+10 x-12 y+41=0$ and straight line L intersect at two points. The diameter of C with slope -2 lies on L.
(a) Find the equation of L.
(b) Find the coordinates of the two end points of that diameter.

5B Lesson Worksheet 7.3C

Objective: To find the equations of tangents to a circle.

Equations of Tangents to a Circle

Use the following to find the equation of the tangent L to circle C (with centre at G) at point P.
(a) L and the radius $P G$ are perpendicular to each other.
(b) For the quadratic equation in one unknown obtained from the simultaneous equations of L and C, the discriminant $\Delta=0$.

Instant Example 1

In the figure, G is the centre of circle C. Find the equation of the tangent L to the circle at P.
Slope of $P G=\frac{3-2}{4-1}$

$$
=\frac{1}{3}
$$

Let m be the slope of L.

$\because \quad L \perp P G$
4 Tangent \perp radius
$\therefore m\left(\frac{1}{3}\right)=-1$

$$
m=-3
$$

The equation of L is

$$
\begin{array}{lr}
y-3=-3(x-4) & 4 \text { Point-slope form: } \\
y-3=-3 x+12 & y-y_{1}=m\left(x-x_{1}\right)
\end{array}
$$

$3 x+y-15=0$

1. In the figure, G is the centre of circle C. Find the equation of the tangent L to the circle at R.

Slope of $R G$
$=\frac{(\quad)-(\quad)}{(\quad)-(\quad)}$
$=$

First find the slope of $R G$. Then find the slope of L.

Instant Practice 1

In the figure, G is the centre of circle C. Find the equation of the tangent L to the circle at Q.

Slope of $Q G=\frac{(\quad)-(\quad)}{(\quad)-(\quad)}$

$$
=(\quad)
$$

Let m be the slope of L.
$\because \quad L \perp(\quad)$

$\therefore m(\quad)=-1$

$$
m=(\quad)
$$

The equation of L is

$$
y-(\quad)=(\quad)[x-(\quad)]
$$

\qquad
2. In the figure, G is the centre of circle C. Find the equation of the tangent L to the circle at S.

Instant Example 2

The straight line $y=-x+c$ touches the circle $x^{2}+y^{2}-6 x-23=0$. Find the values of c.

Substitute $y=-x+c$ into $x^{2}+y^{2}-6 x-23=0$.

$$
\begin{aligned}
x^{2}+(-x+c)^{2}-6 x-23 & =0 \\
x^{2}+x^{2}-2 c x+c^{2}-6 x-23 & =0 \\
2 x^{2}-(2 c+6) x+c^{2}-23 & =0
\end{aligned}
$$

Since the straight line touches the circle, $\Delta=0$.

$$
\begin{aligned}
{[-(2 c+6)]^{2}-4(2)\left(c^{2}-23\right) } & =0 \\
4 c^{2}+24 c+36-8 c^{2}+184 & =0 \\
4 c^{2}-24 c-220 & =0 \\
c^{2}-6 c-55 & =0 \\
(c+5)(c-11) & =0 \\
c & =\underline{\underline{-5}} \text { or } \underline{\underline{11}}
\end{aligned}
$$

3. The straight line $y=m x$ touches the circle $x^{2}+y^{2}-4 y+2=0$. Find the values of m. Substitute $y=m x$ into $x^{2}+y^{2}-4 y+2=0$. $x^{2}+(\quad)^{2}-4(\quad)+2=0$

Instant Practice 2

The straight line $y=4 x+c$ touches the circle $x^{2}+y^{2}+8 x-1=0$. Find the values of c.

Substitute $y=4 x+c$ into $x^{2}+y^{2}+8 x-1=0$.

$$
\left.\begin{array}{rll}
x^{2}+(&)^{2}+(&) x-(
\end{array}\right)=0
$$

Since the straight line touches the circle, $\Delta=0$.

$$
\begin{array}{rlrl}
()^{2}-4(&)(&) & =0 \\
)-(\quad)+(&) & =0 \\
(\quad) c^{2}-(\quad) c-(&) & =0 \\
c^{2}-(\quad) c-(&) & =0 \\
(\quad)(\quad) & =0 \\
c & =(\quad) \operatorname{or}(\quad)
\end{array}
$$

4. The straight line $y=m x-3$ touches the circle $x^{2}+y^{2}+10 x=0$. Find the value of m.

吕Level Up Question吕

5. Joan claims that the two straight lines which touch the circle $x^{2}+y^{2}+8 y+7=0$ with the same y $\xrightarrow{\text { Explain }}$ intercept 1 are perpendicular to each other. Do you agree? Explain your answer.

7 Equations of Circles

$8<$ Consolidation Exercise 7C

[When giving answers in this exercise, (i) express the equations of straight lines in the general form,
(ii) leave the radical sign ' $\sqrt{ }$ ', in the answers if necessary.]

Level 1

Without finding the coordinates of the points of intersection, find the number of points of intersection of circle C and straight line L in each of the following. [Nos. 1-4]

1. $C: x^{2}+y^{2}=24, L: x=5$
2. $C:(x-2)^{2}+(y-3)^{2}=16, L: x+y=1$
3. $C: x^{2}+y^{2}+2 x-4 y-13=0, L: y=x-3$
4. $C: x^{2}+y^{2}+6 x-9=0, L: 2 x+y+5=0$

Find the coordinates of the points of intersection of circle C and straight line L in each of the following.
[Nos. 5-10]
5. $C: x^{2}+y^{2}=8, L: y=x$
6. $C: x^{2}+y^{2}=34, L: y=x-2$
7. $C:(x-4)^{2}+y^{2}=9, L: y=-3$
8. $C:(x-1)^{2}+(y+2)^{2}=4, L: x=2 y$
9. $C: x^{2}+y^{2}+4 x-6 y+3=0, L: y=3 x-5$
10. $C: x^{2}+y^{2}+7 y-9=0, L: y-2 x+1=0$

In each of the following, determine whether the straight line L is a tangent to the circle C.
[Nos. 11-12]
11. $C: x^{2}+y^{2}=32, L: y=x+8$
12. $C: x^{2}+y^{2}+2 x=0, L: x=3 y$

In each of the following, G is the centre and P is a point on the circle. Find the equation of the tangent L to each circle at P. [Nos. 13-15]
13.

14.

15.

$G P Q$ is a straight line.
P is the mid-point of $G Q$.
16. The equation of a circle with centre G is $x^{2}+y^{2}-8 x+2 y+15=0$.
$\xrightarrow{\text { Explain }} \mathbf{(a)}$ Does $A(3,-2)$ lie on the circle? Explain your answer.
(b) Find the equation of the tangent to the circle at A.
17. In the figure, $Q(-7,-1)$ and $R(1,5)$ are the end points of a diameter of the circle. The straight line L touches the circle at $P(-6,6)$. Find the equation of L.

18. The circle $C:(x-7)^{2}+(y-3)^{2}=18$ cuts the x-axis at $P\left(k_{1}, 0\right)$ and $Q\left(k_{2}, 0\right)$, where $k_{1}<k_{2}$. Denote the centre of C by G.
(a) Find the coordinates of P and Q.
(b) If the straight lines L_{1} and L_{2} are the tangents to C at P and Q respectively, find the equations of L_{1} and L_{2}.
19. The straight line $L: y=k x-3$ touches the circle $C:(x+2)^{2}+y^{2}=13$. Find the value of k.
20. The straight line $L: y=2 x+k$ touches the circle $C: x^{2}+y^{2}-6 x+4 y-7=0$. Find the values of k.
21. The straight line $L: y=x-7$ is a tangent to the circle $C: x^{2}+y^{2}+8 x+6 y-k=0$, where $k>0$. Find the value of k.

Level 2

22. In each of the following, the straight line L and the circle C do not intersect. Find the range of values of k
(a) $C: x^{2}+y^{2}+k x-4 y+2=0, L: x+y-4=0$
(b) $C: x^{2}+y^{2}-3 x+6 y+10=0, L: x-2 y+k=0$
23. In each of the following, the straight line L and the circle C intersect at two points. Find the range of values of k.
(a) $C:(x-3)^{2}+y^{2}=8, L: x-y+k=0$
(b) $C: x^{2}+y^{2}+6 x-k y-2=0, L: 2 x+y-1=0$
24. In each of the following, find the number of points of intersection of the circle $x^{2}+y^{2}+4 x-6 y+8=0$ and the straight line $2 x-y+k=0$.
(a) $k<0$
(b) $3<k<6$
25. The centre of a circle is at $(-5,1)$ and the radius is $\sqrt{7}$.
(a) Find the equation of the circle.
(b) Find the number of points of intersection of the straight line $3 x+y+1=0$ and the circle.
26. The centre of the circle C is at $(5,4)$ and the area of the circle C is 8π. The equation of the straight line L is $x+y-9=0$.
(a) Find the equation of C.
(b) Find the coordinates of the points of intersection of L and C.
$\xrightarrow{\text { Explain }}$ (c) Does L divide C into two equal parts? Explain your answer.
27. The straight line $L: x-y-k=0$ touches the circle C : $x^{2}+y^{2}+6 x+1=0$.
(a) Find the values of k.
(b) Find the two possible equations of L.
28. The straight line $L: x=m y+4$ is a tangent to the circle $C: x^{2}+y^{2}-2 x+2 m y=0$, where $m>0$.
(a) Find the value of m.
(b) Find the equation of L.
(c) Find the coordinates of the point of intersection of L and C.
29. The equation of a circle is $x^{2}+y^{2}+8 x-6 y+5=0$. If the slope of the straight line L that touches the circle is 2 , find the two possible equations of L.
30. Circle C passes through three points $(-1,-1),(11,1)$ and $(4,6)$.
(a) Find the equation of C.
(b) Two straight lines L_{1} and L_{2} pass through $A(0,7) . L_{1}$ has a positive slope while L_{2} has a negative slope. L_{1} and L_{2} touch C at P and Q respectively.
(i) Find the equations of L_{1} and L_{2}.
(ii) Find the coordinates of P and Q.

31. Two tangents to circle $C: x^{2}+y^{2}+28 x-4 y+100=0$ pass through the origin O.
(a) Find the equations of the two tangents.
(b) The two tangents touch C at P and Q respectively, where the x-coordinate of P is less than the x coordinate of Q. Find the area of $\triangle O P Q$.
32. In the figure, the circle $C_{1}: 4 x^{2}+4 y^{2}+4 x-8 y-15=0$ and the straight line $L: 2 x-6 y+17=0$ intersect at two points P and Q, where the y coordinate of P is greater than the y-coordinate of Q.
(a) Find the distance between the centre of C_{1} and L.
(b) Find the equation of the circle C_{2} with $P Q$ as a diameter.
$\xrightarrow{\text { Explain }}$ (c) Does the centre of C_{1} lie outside C_{2} ? Explain your answer.

33. The coordinates of the centre of the circle C are ($-4,3$). The circumference of C is $8 \sqrt{5} \pi$. The y intercept of the straight line L is $k . L$ is parallel to the straight line $6 x=2 y-1$.
(a) Find the equation of C.
(b) Express the equation of L in terms of k.
(c) L and C intersect at two points A and B.
(i) Express the coordinates of the mid-point of $A B$ in terms of k.
(ii) Hence, if the length of $A B$ is maximum, find the value of k.
34. The equation of the circle C is $x^{2}+y^{2}-6 x+10 y+9=0$. The equation of the straight line L is $4 x-3 y+23=0$. Let P be a point lying on L such that P is nearest to C and R be a point lying on C such that R is nearest to L.

Explain (a) Do C and L intersect? Explain your answer.
(b) Find the distance between P and R.
(c) Let Q be a point on C that is furthest to R.
(i) Describe the geometric relationship between P, Q and R.
(ii) Find the ratio of the area of $\triangle P Q S$ to the area of $\triangle Q R S$, where S is any point on L except P.
35. In the figure, $P(2,-2)$ and $Q(-10,2)$ are the end points of a diameter of the circle C_{1}. The straight line $L: 3 x-y+p=0$ passes through the centres of the two circles C_{1} and C_{2}, where C_{2} lies in quadrant III. C_{1} and C_{2} touch each other externally at R. The radius of C_{2} is half of that of C_{1}.
(a) Find the equations of C_{1} and C_{2}.
(b) Find the equation of the common tangent of C_{1} and C_{2} at R.

(c) (i) Show that $D(-4,-10)$ lies on C_{2}.
(ii) The tangent to C_{2} at D cuts C_{1} at two distinct points A and B. Find the coordinates of the mid-point of $A B$ without finding the coordinates of A and B.
36. In the figure, O and G are the centres of circles $C_{1}: x^{2}+y^{2}=225$ and $C_{2}:(x-26)^{2}+y^{2}=25$ respectively. L is an external common tangent to C_{1} and C_{2} with points of contact A and B respectively. L cuts the x-axis at P and the slope of L is negative.
(a) By considering similar triangles, find the coordinates of P.
(b) Find the slope of L.

Hence, find the equation of L.

(c) L^{\prime} is another external common tangent to C_{1} and C_{2}. Find the equation of L^{\prime}.
Explain (d) Do the orthocentres of $\triangle O A P$ and $\triangle G B P$ lie on L ? Explain your answer.
37. In the figure, the equations of three circles C_{1}, C_{2} and C_{3} are $x^{2}+y^{2}-2 x+4 y-20=0, x^{2}+y^{2}+6 x+7 y+15=0$ and $2 x^{2}+2 y^{2}+8 x+17 y+41=0$ respectively. C_{1} and C_{3} touch each other internally at $P . C_{2}$ and C_{3} touch each other internally at Q. Two straight lines L_{1} and L_{2} touch C_{3} at P and Q respectively. L_{1} and L_{2} intersect at S.
(a) (i) Find the coordinates of the centre and the radius of each circle.

$\xrightarrow{\text { Explain }}$ (ii) Does the centre of C_{2} lie on C_{3} ? Explain your answer.
(b) Suppose the centre of C_{3} is at R.
(i) Find the coordinates of P and Q.
(ii) Find the equations of L_{1} and L_{2}.

Hence, find the coordinates of S.
38. In the figure, the circle $C: x^{2}+y^{2}-20 x+8 y+76=0$ and the straight line L intersect at two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$. L cuts the y-axis at $(0,6)$ and its slope is m, where $-1<m<-\frac{1}{3}$.
(a) Express the equation of L in terms of m.
(b) Show that $\left(x_{1}-x_{2}\right)^{2}=\frac{-80\left(3 m^{2}+10 m+3\right)}{\left(1+m^{2}\right)^{2}}$.
(c) Show that $A B=\sqrt{\frac{-80(m+3)(3 m+1)}{1+m^{2}}}$.
(d) Suppose $A B=\sqrt{80}$.

(i) Find the distance between L and the centre of C.
(ii) Find the value of m and the corresponding equation of L.

* 39. In the figure, the straight line $L: y=2 x$ passes through the origin and intersects the circle $C: x^{2}+y^{2}-14 x-18 y+k=0$ at two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, where $x_{1}<x_{2}$ and $k<130$. Let G be the centre of C.
(a) (i) Find the coordinates of G.
(ii) Express the radius of C in terms of k.
(b) Show that $x_{1}+x_{2}=10$ and $x_{1} x_{2}=\frac{k}{5}$.
(c) The length of $A B$ is 4 times the distance between L and G.

Let P be a point on L such that P is nearest to G.
(i) Find the value of k.
$\xrightarrow{\text { Explain (ii) Does the centroid of } \triangle A G P \text { lie on the vertical line }}$ which passes through P ? Explain your answer.

* 40. Consider $P(-5,-7)$ and $Q(5,13)$. L is the perpendicular bisector of $P Q$.
(a) Find the equation of L.
(b) Suppose that $G(h, k)$ is a point lying on L. Let C be the circle which is centred at G and passes through P and Q. Prove that the equation of C is $x^{2}+y^{2}-2(6-2 k) x-2 k y+6 k-134=0$.
(c) The coordinates of the point R are $(10,8)$.
(i) Using the result of (b), find the coordinates of the centre G^{\prime} of the circle which passes through P, Q and R.
(ii) Find the equation of the tangent to the circle found in (c)(i) at R.
$\xrightarrow{\text { Explain }}$ (iii) Can the radius of C in (b) be smaller than the radius of the circle found in (c)(i)? Explain your answer.
*41. The equation of circle C with centre G is $x^{2}+y^{2}-4 x+6 y-12=0$.
(a) Show that $A\left(-\frac{3}{2},-\frac{7}{2}\right)$ lies inside C and find the equation of the chord with A as the mid-point.
(b) P and Q are the end points of the chord found in (a), where Q lies in quadrant III. Find the coordinates of P and Q.
(c) Two straight lines L_{1} and L_{2} touch C at P and Q found in (b) respectively. L_{1} and L_{2} intersect at R.
(i) Find the coordinates of R.
(ii) Find the area of $\triangle P Q R$.
$\xrightarrow{\text { Explain }}$ (iii) Is the area of $C 8$ times that of the inscribed circle of $\triangle P Q R$? Explain your answer.
 Explain your answer.
*42. In the figure, $A B$ is a diameter of the circle and $B C$ is the tangent to the circle at B. $A B$ is produced to O such that $A C \perp C O$.
(a) (i) Prove that $\triangle A B C \sim \triangle A C O$.
(ii) Prove that $\triangle A B C \sim \triangle C B O$.
(iii) Prove that $B C=\sqrt{A B \times B O}$.

(b) A rectangular coordinate system is introduced to the figure so that the coordinates of O and A are $(0,0)$ and $(-15,-10)$ respectively. The equation of $B C$ is $3 x+2 y+13=0$.
(i) Find the coordinates of B and C.
(ii) Find the equation of the circle.
(iii) Find the equation of another tangent to the circle where the tangent passes through C.
*43. The figure shows $\triangle O A B . C$ is a point on $O A$ such that $B C \perp O A . O B$ touches the inscribed circle of $\triangle O B C$ at D. $D E$ passes through the centre of the inscribed circle of $\triangle O B C$, where E lies on $O A$.
(a) Prove that $B C E D$ is a cyclic quadrilateral.
(b) A rectangular coordinate system is introduced to the figure so that the coordinates of O and C are $(0,0)$ and $(-20,0)$
 respectively. It is given that $A B=\sqrt{229}$ and $O B=25$.
(i) Find the coordinates of A and B.
(ii) Find the equation of the inscribed circle.
(iii) Find the equation of $D E$.
(iv) Find the equation of the circle passing through B, C, D and E.

Answers

Consolidation Exercise 7C

1. 0
2. 2
3. 1
4. 2
5. $(2,2),(-2,-2)$
6. $(-3,-5),(5,3)$
7. $(4,-3)$
8. no points of intersection
9. no points of intersection
10. $(-3,-7),(1,1)$
11. yes
12. no
13. $3 x-4 y-13=0$
14. $2 x+y+22=0$
15. $2 x+3 y-28=0$
16. (a) yes
(b) $x+y-1=0$
17. $3 x-4 y+42=0$
18. (a) $P(4,0), Q(10,0)$
(b) $L_{1}: x+y-4=0, L_{2}: x-y-10=0$
19. $\frac{2}{3}$
20. $-18,2$
21. 7
22. (a) $0<k<8$
(b) $k<-10$ or $k>-5$
23. (a) $-7<k<1$
(b) $k<-6$ or $k>-1$
24. (a) 0
(b) 2
25. (a) $x^{2}+y^{2}+10 x-2 y+19=0$
(b) 0
26. (a) $x^{2}+y^{2}-10 x-8 y+33=0$
(b) $(3,6),(7,2)$
(c) yes
27. (a) $-7,1$
(b) $x-y+7=0, x-y-1=0$
28. (a) 1
(b) $x-y-4=0$
(c) $(2,-2)$
29. $2 x-y+1=0,2 x-y+21=0$
30. (a) $x^{2}+y^{2}-10 x-12=0$
(b) (i) $L_{1}: 6 x-y+7=0, L_{2}: x+6 y-42=$

0
(ii) $P(-1,1), Q(6,6)$
(iii) yes
31. (a) $4 x+3 y=0,3 x-4 y=0$
(b) 50
32. (a) $\sqrt{\frac{5}{2}}\left(\right.$ or $\left.\frac{\sqrt{10}}{2}\right)$
(b) $4 x^{2}+4 y^{2}+8 x-20 y+19=0$
(c) no
33. (a) $x^{2}+y^{2}+8 x-6 y-55=0$
(b) $3 x-y+k=0$
(c) (i) $\left(\frac{5-3 k}{10}, \frac{15+k}{10}\right)$
(ii) 15
34. (a) no
(b) 5
(c) (i) P, Q and R are collinear.
(ii) $3: 2$
35. (a) $C_{1}: x^{2}+y^{2}+8 x-24=0$, $C_{2}: x^{2}+y^{2}+14 x+18 y+120=0$
(b) $x+3 y+24=0$
(c) (ii) $(-1,-1)$
36. (a) $(39,0)$
(b) slope of $L:-\frac{5}{12}, L: 5 x+12 y-195=0$
(c) $5 x-12 y-195=0$
(d) yes
37. (a) (i) centre of $C_{1}:(1,-2)$,
radius of $C_{1}: 5$,
centre of $C_{2}:\left(-3,-\frac{7}{2}\right)$,
radius of $C_{2}: \frac{5}{2}$,
centre of $C_{3}:\left(-2,-\frac{17}{4}\right)$,
radius of $C_{3}: \frac{5}{4}$
(ii) yes
(b) (i) $P(-3,-5), Q(-1,-5)$
(ii) $L_{1}: 4 x+3 y+27=0$,

$$
L_{2}: 4 x-3 y-11=0, S\left(-2,-\frac{19}{3}\right)
$$

38. (a) $m x-y+6=0$
(d) (i) $\sqrt{20}$ (or $2 \sqrt{5}$)
(ii) $m=-\frac{1}{2}, L: x+2 y-12=0$
39. (a) (i) $(7,9)$
(ii) $\sqrt{130-k}$
(c) (i) 105
(ii) yes
40. (a) $x+2 y-6=0$
(c) (i) $(0,3)$
(ii) $2 x+y-28=0$
(iii) no
41. (a) $7 x+y+14=0$
(b) $P(-2,0), Q(-1,-7)$
(c) (i) $(-5,-4)$
(ii) $\frac{25}{2}$
(iii) no
(iv) yes
42. (b) (i) $B(-3,-2), C(1,-8)$
(ii) $x^{2}+y^{2}+18 x+12 y+65=0$
(iii) $2 x-3 y-26=0$
43. (b) (i) $A(-22,0), B(-20,15)$
(ii) $x^{2}+y^{2}+30 x-10 y+225=0$
(iii) $4 x-3 y+75=0$
(iv) $4 x^{2}+4 y^{2}+155 x-60 y+1500=0$

F5B: Chapter 8A					
Date	Task	Progress			
	Lesson Worksheet	Complete and Checked Problems encountered Skipped			
	Book Example 1	Complete Problems encountered Skipped			
	Book Example 2	Complete Problems encountered Skipped			
	Book Example 3	Complete Problems encountered Skipped			
	Book Example 4	Complete Problems encountered Skipped			
	Book Example 5	Complete Problems encountered Skipped			
	Consolidation Exercise	Complete and Checked Problems encountered Skipped			
	Maths Corner Exercise 8A Level 1	Complete and Checked Problems encountered Skipped	Teacher's Signature	(
	Maths Corner Exercise 8A Level 2	Complete and Checked Problems encountered Skipped	Teacher's Signature	$\overline{(})$	
	Maths Corner Exercise 8A Multiple Choice	$\begin{array}{\|ll\|} \hline \bigcirc & \text { Complete and Checked } \\ \bigcirc & \text { Problems encountered } \\ \bigcirc & \text { Skipped } \\ \hline \end{array}$	Teacher's Signature	$\overline{(}$	
	E-Class Multiple Choice Self-Test	Complete and Checked Problems encountered Skipped	Mark:		

Objective: To review the distance between a point and a line, and the distance between two parallel lines.

Distance between a Point and a Line

1. In the figure, find the distance between point P and the straight line L.

$=(\quad)$
$=$ \qquad
2. In the figure, $A B \perp A D$ and $A D \perp D C$. Find the distance between B and $D C$.

Let E be a point on () such that
$(\quad) \perp(\quad)$.
$E C=(\quad)-(\quad)$

$$
\left.=\left[\begin{array}{ll}
(&)-(
\end{array}\right)\right] \mathrm{cm}
$$

$$
=
$$

In $\triangle B E C$,
$(\quad)^{2}+(\quad)^{2}=(\quad)^{2}$

$(\quad)=\sqrt{(\quad)^{2}-(\quad)^{2}} \mathrm{~cm}$ $=$
2. In the figure, $A B C D$ is a rectangle. Find the distance between point D and $B C$.

\rightarrow Review Ex: 1
4. In the figure, $\triangle X Y Z$ is an equilateral triangle of side $2 \sqrt{3} \mathrm{~cm}$. Find the distance between X and $Y Z$.

Let () be a point on () such that () $\perp(\quad)$.
$(\quad)=\frac{1}{2}(\quad)=\frac{1}{2} \times(\quad \mathrm{cm}$
5. In the figure, $P Q R$ is a triangle.
(a) Find the height of $\triangle P Q R$ with $Q R$ as the base.
(b) Find the area of $\triangle P Q R$.

Distance between Two Parallel Lines

6. In the figure, $M N / / P Q / / R S$. Find the distance between $P Q$ and $R S$.

Distance between $P Q$ and $R S$
$=\left[\left(\begin{array}{l}(\end{array}\right)\right] \mathrm{cm}$
$=$ \qquad

7. In the figure, straight lines L_{1} and $L_{3}: y=5$ are equidistant from the straight line $L_{2}: y=2$.
(a) Find the distance between L_{2} and L_{3}.
(b) Find the equation of L_{1}.

8. In the figure, $X(12,4)$ and $Y(-12,-3)$ are points on straight lines L_{1} and L_{2} respectively. If $X Y \perp L_{1}$ and $X Y \perp L_{2}$, find the distance between L_{1} and L_{2}.

$$
\begin{aligned}
& \text { Distance between two points } \\
& \left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

吕Level Up Question舍

9. In the figure, $A(8,4)$ and $B(10,0)$ are points on straight line L and the x-axis respectively. Straight line L_{1} passes through $P(a, b)$, where $L / / L_{1}$, $P A=P B, P A \perp L$ and $P B \perp$ the x-axis.
(a) Find the coordinates of P.
(b) Find the distance between L and L_{1}.

Objective: To describe and sketch the locus of points satisfying given conditions.

Relationship between a Moving Point and Fixed Point(s)

(a) A moving point and a fixed point

Condition: A moving point P maintains a fixed distance of r from a fixed point O.

Locus: A circle with centre O and radius r.

(b) A moving point and two fixed points

Condition: A moving point P maintains an equal distance from two fixed points A and B, i.e. $P A=P B$.

Locus: The perpendicular bisector of the line segment $A B$.

1. The figure shows a rectangle $A B C D$. A moving point P maintains a fixed distance of 1 cm from D.
(a) Sketch the locus of P.

Step 1: Use a ruler to draw several points which are 1 cm from D.
Step 2: Use a curve to join all the points drawn.

(b) Describe the locus of P.

The locus is a () with centre () and radius () cm.
2. In the figure, $A B=A C$. A moving point P maintains an equal distance from B and C, i.e.
$P B=P C$.
\rightarrow Ex 8A: 1, 2
(a) Sketch the locus of P.

Step 1: Use a pair of compasses to draw several points such that $P B=P C$.
Step 2: Use a ruler to join all the points drawn.

(b) Describe the locus of P.

The locus is the (
of the (\qquad).

Consider rectangle $W X Y Z$ as shown in the figure. [Nos. 3-4]
3. A moving point P maintains an equal distance from Z and Y, i.e. $P Z=P Y$.
(a) Sketch the locus of P.

(b) Describe the locus of P.
4. A moving point P maintains a fixed distance of 1.2 cm from X.
(a) Sketch the locus of P.

(b) Describe the locus of P.
(c) A moving point and a line

Condition: A moving point P maintains a fixed distance of d from a fixed line L.
Locus: A pair of parallel lines which are parallel to L, one on either side of L and each at a distance of d from L.

(d) A moving point and a line segment

Condition: A moving point P maintains a fixed distance of d from a fixed line segment $A B$.
Locus: A closed figure formed by two line segments, which are parallel to $A B$ with the same length as $A B$ and
 each at a distance of d from $A B$, and two semi-circles of radii d and with centres A and B respectively.
5. In the figure, a moving point P maintains a fixed distance of 1 cm from the fixed line L.
(a) Sketch the locus of P.

Step 1: On one side of L, mark several points 1 cm from L.
Step 2: On the other side of L, mark several points 1 cm from L.
Step 3: Use a ruler to join the points drawn on each side.
(b) Describe the locus of P.

The locus is a pair of (
which are (\qquad), one on either side of () and each at a distance of () cm from ().
6. In the figure, a moving point Q maintains a fixed distance of 1.5 cm from the fixed line L.
(a) Sketch the locus of Q.
\rightarrow Ex 8A: 3

(b) Describe the locus of Q. distance of 1 cm from the line segment $A B$.
(a) Sketch the locus of P.
(b) Describe the locus of P.

The locus is a () figure formed by
() line segments, which are (to $A B$ with the same length as (\quad) and each at a distance of () from $A B$, and two
\qquad () and () respectively.
8. In the figure, $A B C D$ is a rectangle, where $A B=2.4 \mathrm{~cm}$ and $B C=1.6 \mathrm{~cm}$.

A moving point Q lies outside the rectangle and it maintains a fixed distance of 1.2 cm from the line segment $A D$.
(a) Sketch the locus of P.
(b) Describe the locus of P.

The locus consists of () line segment and () semi-circles outside the rectangle. The line segment has the same length as
 () , parallel to () and at a distance of () from $A D$. The () semi-circles are of radii () and with centres
() and () respectively.

Relationship between a Moving Point and Two Fixed Lines
(e) A moving point and two parallel lines

Condition: A moving point P maintains an equal distance from two fixed parallel lines L_{1} and L_{2}.

Locus: A straight line parallel to L_{1} and L_{2}, and equidistant
 from L_{1} and L_{2}.
(f) A moving point and two intersecting lines

Condition: A moving point P maintains an equal distance from two fixed intersecting lines L_{1} and L_{2}.
Locus: A pair of straight lines passing through the point of intersection of L_{1} and L_{2}. They are the two angle
 bisectors of the angles formed between L_{1} and L_{2}.
9. The figure shows a square $E F G H$. A moving point P lies inside the square and it is equidistant from the line segments $E F$ and $H G$.
(a) Sketch the locus of P.

(b) Describe the locus of P.

The locus is the () joining
the () of () and ().
10. The figure shows a parallelogram $A B C D$. A moving point Q lies inside the parallelogram and it is equidistant from the line segments $A D$ and $B C$.
(a) Sketch the locus of Q.
\rightarrow Ex 8A: 5

(b) Describe the locus of Q.
11. In the figure, $X Y=X Z$. A point P moves inside $\triangle X Y Z$ and it maintains an equal distance from $X Y$ and $X Z$.
(a) Sketch the locus of P.

Step 1: Use a pair of compasses to draw several points which are equidistant from $X Y$ and $X Z$.
Step 2: Use a ruler to join all the points drawn.

(b) Describe the locus of P.

The locus is the () of $\angle(\quad)$ inside $\triangle(\quad$.
12. The figure shows a rhombus $A B C D$. A point P moves inside the rhombus and it maintains an equal distance from $A D$ and $C D$
\rightarrow Ex 8A: 4
(a) Sketch the locus of P.

(b) Describe the locus of P.

Relationship between a Moving Point and a Fixed Point and a Fixed Line
(g) A moving point and a fixed point and a fixed line

Condition: A moving point P maintains an equal distance from a fixed point F and a fixed line L, i.e. $P F=P Q$.
Locus: A parabola.

13. In the figure, $C D E F$ is a rectangle. M and N are the mid-points of $C D$ and $F E$ respectively. A point P moves inside the rectangle and it is equidistant from M and the line segment $F E$.
(a) Sketch the locus of P.

Step 1: Mark the mid-point of $M N$. (Note that $C M=C F=D M=D E$.)
Step 2: Draw a parabola from C to D passing through the point obtained in Step 1.

(b) Describe the locus of P.

The locus is a (), which lies
inside () . The (
opens () with () and ()
as the end points.
14. In the figure, $W X Y Z$ is a rectangle. M and N are the mid-points of $Z Y$ and $W X$ respectively. A point P moves inside the rectangle and it is equidistant from M and the line segment $W X$. \rightarrow Ex 8A: 8
(a) Sketch the locus of P.

Step 1: Mark the mid-point of $M N$. (Note that $Z M=Z W=Y M=Y X$.
Step 2: Draw a parabola from Z to Y passing through the point obtained in Step 1.
(b) Describe the locus of P.

食Level Up Question全

15. The figure shows a line segment $M N$ of length 2.8 cm . A point P moves such that the area of $\triangle P M N=1.4 \mathrm{~cm}^{2}$. Sketch and describe the locus of P.

8 Locus

Consolidation Exercise 8A

Level 1

1. The figure shows an equilateral triangle $A B C$ of side 3 cm . A moving point P maintains a fixed distance of 3 cm from C. Sketch and describe the locus of P.

2. In the figure, $A B$ is a line segment of length 2 cm . A moving point P maintains a fixed distance from A and that fixed distance is equal to half of the length of $A B$. Sketch and describe the locus of P.
3. In the figure, $A B C D$ is a rectangle. A moving point P maintains an equal distance from A and D. Sketch and describe the locus of P.

4. In the figure, A and B are points on an inclined plane such that $A B=10 \mathrm{~cm}$. A ball with centre P and radius 1 cm rolls down from A to B along the plane. Sketch and describe the locus of P.
5. In the figure, $A B C D$ is a square of side 2 cm . A point P moves inside the square $A B C D$, and it maintains an equal distance from B and D.
(a) Sketch and describe the locus of P.
(b) Describe the geometric relationship between the locus of P and $B D$.
6. The figure on the right is formed by two identical trapeziums $A D F E$ and $B C F E$, where $A D / / E F / / B C$. A point P moves inside $A E B C F D$, and it maintains an equal distance from $A D$ and $B C$. Sketch and describe the locus of P.

7. In the figure, $A B C D$ is a rhombus. P is a point inside the rhombus. When P moves, it maintains an equal distance from $A B$ and $B C$.
(a) Sketch and describe the locus of P.
(b) Describe the geometric relationship between the locus of P and $\angle A B C$.
8. In the figure, the length of a line segment $A B$ is 4 cm . A moving point P maintains a fixed distance of 2 cm from the line segment $A B$. Sketch and describe the locus of P.
9. In the figure, L is a vertical line and B is a fixed point on $L . A$ is a fixed point on the right of L and $A B \perp L$. A moving point P maintains an equal distance from A and the line L.
(a) Sketch and describe the locus of P.
\qquad (b) Does the perpendicular bisector of $A B$ intersect the locus of P ? Explain your answer.
10. The figure shows a clock. The length of the hour-hand is 15 cm . Let P be the tip of the hour-hand. If it is 9 o'clock now, sketch and describe the locus of P during the next 3 hours.

Level 2

11. In the figure, A and B are two fixed points on a plane.
(a) A moving point P maintains a fixed distance from the mid-point of $A B$ and that fixed distance is equal to half of the length of $A B$.
(b) A point Q moves such that $A Q^{2}+Q B^{2}=A B^{2}$. Sketch and describe the locus of Q.
12. The figure shows a square $A B C D$ of side 5 cm . A point P lies outside the square $A B C D$. The point P moves such that it maintains a fixed distance of 2 cm from the line segment $A B$. Sketch and describe the locus of P.
13. In the figure, $A B$ is a line segment of length 7 cm . A point P moves such that the area of $\triangle P A B$ is $14 \mathrm{~cm}^{2}$. Sketch and describe the locus of P.
14. In the figure, $A B C D$ is a rectangle. $A B=8 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$. A point P moves inside the rectangle such that the area of $\triangle P A D$ is $9 \mathrm{~cm}^{2}$.
(a) Sketch and describe the locus of P.
(b) Find the area of $\triangle P B C$.
15. In the figure, $A B E F$ and $B C D E$ are two squares of sides 4 cm . A point P moves inside the rectangle $A C D F$, and it is equidistant from E and $A C$.
(a) Sketch and describe the locus of P.
(b) A point Q moves inside the rectangle $A C D F$, and it is equidistant from B and $F D$. How many points of intersection are there between the locus of P and the locus of Q ? Explain your answer.
16. The figure shows a regular hexagon $A B C D E F$.
(a) A point P moves inside $A B C D E F$, and it maintains an equal distance from $A B$ and $B C$. Sketch and describe the locus of P.
$\xrightarrow{\text { Explain }}$
(b) A point Q moves inside $A B C D E F$, and it maintains an equal distance from D and F. John claims that the locus obtained in (a) and the locus of Q are the same. Do you agree? Explain your
 answer.
(c) A moving point R maintains an equal distance from D and E. It is given that the locus of R and the locus obtained in (a) intersect at a point S. Describe the geometric relationship between S and $A B C D E F$.
17. In the figure, $A B$ is a fixed line segment and $\angle A C B=30^{\circ} . P$ is a point above $A B$. The point P moves such that $\angle A P B=30^{\circ}$.
(a) Sketch and describe the locus of P.
(b) If $A B=4 \mathrm{~cm}$, find the area enclosed by the locus of P and the line segment $A B$ in terms of π.
(Leave the radical sign ' $\sqrt{ }$ ' in the answer.)

* 18. In the figure, A^{\prime} is the image of A when reflected in a straight line L. When a point P moves, no point on L is equidistant from P and A. Sketch and describe the locus of P.
x^{A}

L

* 19.

In the figure, $\triangle P A B$ is an equilateral triangle of side $3 \mathrm{~cm} . P B$ lies on a straight line $L . \triangle P A B$ undergoes the following two rotations along L, where A^{\prime} and $P^{\prime \prime}$ lie on L.
I. $\triangle P A B$ rotates clockwise about B to become $\triangle B P^{\prime} A^{\prime}$ first.
II. Then $\triangle B P^{\prime} A^{\prime}$ rotates clockwise about A^{\prime} to become $\triangle A^{\prime} B^{\prime} P^{\prime \prime}$.
(a) Sketch and describe the locus of P during the two rotations.
(b) Find the total distance travelled by P during the two rotations in terms of π.

Answers

Consolidation Exercise 8A

1. a circle with centre C and radius 3 cm
2. a circle with centre A and radius 1 cm
3. the perpendicular bisector of the line segment $A D$
4. a line segment of 10 cm , parallel to $A B$ and at a distance of 1 cm from $A B$
5. (a) line segment $A C$
(b) The locus of P is perpendicular to $B D$ and bisects $B D$.
6. line segment $E F$
7. (a) line segment $B D$
(b) The locus of P is the angle bisector of $\angle A B C$.
8. A closed figure formed by two line segments and two semi-circles. The two line segments are 4 cm long, parallel to $A B$ and at a distance of 2 cm from $A B$. The two semicircles are of radii 2 cm and with centres A and B respectively.
9. (a) a parabola opening to the right with the mid-point of $A B$ as the vertex
(b) yes
10. $\frac{1}{4}$ of a circle with radius 15 cm
11. (a) a circle with $A B$ as a diameter
(b) a circle with $A B$ as a diameter
12. The locus consists of a line segment and two semi-circles outside the square. The line segment is 5 cm long, parallel to $A B$ and at a distance of 2 cm from $A B$. The two semicircles are of radii 2 cm and with centres A
and B respectively.
13. two straight lines parallel to $A B$ and at a distance of 4 cm from $A B$
14. (a) a line segment of length 6 cm inside $A B C D$, parallel to $A D$ and at a distance of 3 cm from $A D$
(b) $15 \mathrm{~cm}^{2}$
15. (a) a parabola which lies inside $A C D F$ and opens downward with D and F as the end points
(b) 1
16. (a) line segment $B E$
(b) yes
(c) S is the circumcentre of the hexagon $A B C D E F$.
17. (a) The locus of P is an arc passing through A, B and C with the angle at the centre subtended by $\overparen{A C B}$ equal to 300°, excluding the points A and B.
(b) $\left(\frac{40 \pi}{3}+4 \sqrt{3}\right) \mathrm{cm}^{2}$
18. a straight line passing through A and A^{\prime}, excluding points A and A^{\prime}
19. (a) The locus of P consists of two arcs $\overparen{P A P}^{\prime}$ and $P \overparen{B}^{\prime} P^{\prime \prime}$. The arc $\overparen{P A P}^{\prime}$ is of radius 3 cm and with centre B, where $\angle P B P^{\prime}=120^{\circ}$. The arc $P^{\prime} B^{\prime} P^{\prime \prime}$ is of radius 3 cm and with centre A^{\prime}, where $\angle P^{\prime} A^{\prime} P^{\prime \prime}=120^{\circ}$.
(b) $4 \pi \mathrm{~cm}$

Objective: To describe the locus of points with algebraic equations, including equations of straight lines, circles and parabolas.

Describing Locus with an Algebraic Equation

The locus is a circle.	The locus is a straight line.	The locus is a parabola.
$(x-h)^{2}+(y-k)^{2}=r^{2}$	$a x+b y+c=0$	$y=a x^{2}+b x+c$

Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Instant Example 1

In the figure, a moving point $P(x, y)$ maintains a fixed distance of 2 from $B(1,0)$. Find the equation of the locus of P.

4 The condition for P
$\because \quad P B=2$
$\therefore \sqrt{(x-1)^{2}+(y-0)^{2}}=2$

$$
(x-1)^{2}+y^{2}=4
$$

4 Square both sides.
$\therefore \quad$ The equation of the locus of P is

$$
(x-1)^{2}+y^{2}=4
$$

The locus of P is a circle with centre B and radius 2 .

Instant Practice 1

In the figure, a moving point $P(x, y)$ maintains a fixed distance of 3 from $C(0,-2)$. Find the equation of the locus of P.

$\because \quad P C=(\quad)$
$\therefore \sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}}=(\quad)$

$$
x^{2}+[y+(\quad)]^{2}=(\quad)
$$

\therefore The equation of the locus of P is

In each of the following, Q is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains a fixed distance of d from Q. Find the equation of the locus of P. [Nos. 1-2]

1. $Q(4,-1)$ and $d=5$
$\because P Q=(\quad)$
$\therefore \sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}}=(\quad)$
2. $Q(-8,-3)$ and $d=6$
\rightarrow Ex 8B: 1-4

Instant Example 2

In the figure, $M(-4,0)$ and $N(0,2)$ are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from M and
 N, i.e. $P M=P N$. Find the equation of the locus of P.
$\because \quad P M=P N$
$\therefore \sqrt{[x-(-4)]^{2}+(y-0)^{2}}=\sqrt{(x-0)^{2}+(y-2)^{2}}$
$(x+4)^{2}+y^{2}=x^{2}+(y-2)^{2}$
$x^{2}+8 x+16+y^{2}=x^{2}+y^{2}-4 y+4$
$8 x+4 y+12=0$
$2 x+y+3=0$
\therefore The equation of the locus of P is
$2 x+y+3=0$.

The locus of P is the perpendicular bisector of $M N$.

3. $A(0,6)$ and $B(3,4)$ are two points in a rectangular coordinate plane. A moving point $P(x, y)$ is equidistant from A and B. Find the equation of the locus of P.

$$
\begin{array}{lc}
\because & (\quad)=(\quad) \\
\therefore & \sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}} \\
& =\sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}}
\end{array}
$$

Instant Practice 2

In the figure, $X(0,3)$ and $Y(5,0)$ are two points in a rectangular coordinate plane. A point $P(x, y)$ moves such that $P X=P Y$. Find the equation of the locus of P.

$$
\begin{aligned}
& \because \quad(\quad)=(\quad) \\
& \therefore \quad \sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}} \\
& =\sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}} \\
& x^{2}+[y-(\quad)]^{2}=[x-(\quad)]^{2}+y^{2} \\
& x^{2}+y^{2}-(\quad) y+(\quad)=x^{2}-(\quad) x+(\quad)+y^{2} \\
& (\quad) x-(\quad) y-(\quad)=0 \\
& (\quad) x-(\quad) y-(\quad)=0
\end{aligned}
$$

$\therefore \quad$ The equation of the locus of P is
\qquad

4. $R(7,-4)$ and $S(8,1)$ are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from R and S. Find the equation of the locus of $P . \quad \rightarrow$ Ex 8B: 5-9

Instant Example 3

In the figure, a moving point $P(x, y)$ maintains an equal distance from $M(0,-1)$ and the x-axis. Find the equation of the locus of P.

Let Q be a point on the x-axis such that $P Q$ is perpendicular to the x-axis.

$$
\begin{aligned}
& P Q=0-y=-y \\
& P M=\sqrt{(x-0)^{2}+[y-(-1)]^{2}} \\
& =\sqrt{x^{2}+(y+1)^{2}} \\
& \because \quad P M=P Q \\
& \therefore \quad \sqrt{x^{2}+(y+1)^{2}}=-y \\
& \\
& x^{2}+(y+1)^{2}=(-y)^{2} \\
& x^{2}+y^{2}+2 y+1=y^{2} \\
& \\
& x^{2}+2 y+1=0
\end{aligned}
$$

$\therefore \quad$ The equation of the locus of P is

$$
x^{2}+2 y+1=0 .
$$

Let Q be a point on the () such that $P Q$ is () the ().
5. In the figure, a moving point $P(x, y)$ maintains an equal distance from $W(-5,6)$ and the x-axis. Find the equation of the locus of P. $P Q=(\quad)-(\quad)=(\quad)$

Instant Practice 3

In the figure, a moving point $P(x, y)$ maintains an equal distance from $N(0,8)$ and the line $y=3$. Find the equation of the locus of P.

Let Q be a point on the line
() such that $P Q$ is
() the
line ().
$P Q=(\quad)-(\quad)$
$P N=\sqrt{[x-(\quad)]^{2}+[y-(\quad)]^{2}}$
$=\sqrt{(\quad)^{2}+(\quad)^{2}}$
$\because \quad P N=(\quad)$
$\therefore \quad \sqrt{(\quad)^{2}+(\quad)^{2}}=(\quad)$

$$
(\quad)^{2}+(\quad)^{2}=(\quad)^{2}
$$

$$
x^{2}+y^{2}-(\quad) y+(\quad)=y^{2}-(\quad) y+(\quad)
$$

$$
x^{2}-(\quad) y+(\quad)=0
$$

\therefore The equation of the locus of P is
\qquad
6. In the figure, a moving point $P(x, y)$ maintains an equal distance from $D(3,-4)$ and the line $L: y=2$. Find the equation of the locus of P.

-Ex 8B: 11-14, 17, 18

7．$A(-3,-9)$ is a point in a rectangular coordinate plane．A moving point $P(x, y)$ maintains a fixed distance from A ．The fixed distance is equal to the distance between A and the y－axis．
（a）Find the equation of the locus of P ．
（b）A moving point $Q(x, y)$ maintains a fixed distance from A ．The fixed distance is larger than the distance between P and A by 2 ．Find the equation of the locus of Q ．

8．$L: 3 x+2 y-6=0$ is a straight line in a rectangular coordinate plane．P is a moving point such that it maintains a fixed distance from L and P lies above L ．Denote the locus of P by Γ ．
（a）Describe the geometric relationship between L and Γ ．
（b）If Γ passes through $(2,1)$ ，find the equation of Γ ．
（a）$\quad \Gamma$ is $(\quad L$ ．
（b）Slope of $\Gamma=$ slope of（ ）

Sketch the locus of Γ ．

人̂⿱宀㠯犬 Level Up Question令

9．In the figure，$L: y=10$ is a straight line in a rectangular coordinate plane．
（a）A moving point $P(x, y)$ maintains an equal distance from L and the x－axis．Find the equation of the locus of P ．
（b）A moving point $Q(x, y)$ maintains an equal distance from $B(-2,0)$ and L ．Find the equation of the locus of Q ．

\qquad （c）Does the locus of P intersect the locus of Q ？Explain your answer．

8 Locus

Consolidation Exercise 8B

Level 1

1. In the figure, $A(-2,0)$ is a point on the x-axis. A moving point $P(x, y)$ maintains a fixed distance of 2 from A. Find the equation of the locus of P.

2. In the figure, $A(-1,1)$ and $B(2,3)$ are two points in a rectangular coordinate plane. A point $P(x, y)$ moves such that $P A=A B$. Find the equation of the locus of P.

In each of the following, A is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains a fixed distance of d from A. Find the equation of the locus of P. [Nos. 3-4]
3. $A(12,9)$ and $d=14$
4. $\quad A(7,-4)$ and $d=\sqrt{21}$
5. In the figure, $A(4,-3)$ and $B(4,7)$ are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from A and B, i.e. $P A=P B$.
(a) Find the equation of the locus of P.
(b) Describe the geometric relationship between the locus of P and the line $y=1$.

6. $\quad C(-5,6)$ and $D(-2,6)$ are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from C and D, i.e. $P C=P D$.
(a) Find the equation of the locus of P.
(b) Describe the geometric relationship between the locus of P and the x-axis.
7. In the figure, $E(1,-2)$ and $F(-3,4)$ are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from E and F.
(a) Describe the locus of P.
(b) Find the equation of the locus of P.

8. In the figure, U and V are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from U and V.
(a) Find the equation of the locus of P.
(b) The equation of a straight line L is $y=3 x+2$. Describe the geometric relationship between the locus of P and L.

In each of the following, A and B are two points in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from A and B. Find the equation of the locus of P. [Nos. 9-10]
9. $A(1,1)$ and $B(0,6)$
10. $A(-2,-5)$ and $B(1,-4)$
$A(3,2)$ and $B(6,6)$ are two points in a rectangular coordinate plane. Find the equation of the locus of a moving point $P(x, y)$ satisfying each of the following conditions. [Nos. 11-12]
11. $3 A P=P B$
12. $A P: P B=2: 1$
13. In the figure, $F(1,2)$ is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from F and the x-axis.
(a) Describe the locus of P.
(b) Find the equation of the locus of P.

14. In the figure, $F(6,-2)$ is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from F and the x-axis.
(a) Find the equation of the locus of P.
(b) Find the y-intercept of the locus of P.

In each of the following, F is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from F and the x-axis. Find the equation of the locus of P. [Nos. 15-16]
15. $F(-7,7)$
16. $F(-4,-3)$
17. In the figure, a moving point $P(x, y)$ maintains an equal distance from the vertical line $x=4$ and $x=-6$.
(a) Find the equation of the locus of P.
$\xrightarrow{\text { Explain }}$ (b) Is $(-2,5)$ a point on the locus of P ? Explain your answer.

Level 2

18. In the figure, $A(3,2)$ is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains a fixed distance of 5 from A.
(a) Find the equation of the locus of P.
(b) If $Q(x, y)$ is a point on the line segment $A P$ such that
$A Q: Q P=3: 2$, find the equation of the locus of Q.
(c) Describe the geometric relationship between the loci of P and Q.

19. $F(-5,2)$ is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from F and the line $y=-2$.
(a) Find the equation of the locus of P.
$\xrightarrow{\text { Explain }}$ (b) Does the locus of P pass through $(4,10)$? Explain your answer.
20. $F(4,1)$ is a point in a rectangular coordinate plane. A moving point $P(x, y)$ maintains an equal distance from F and the line $y=4$.
(a) Find the equation of the locus of P.
$\mathcal{S <}$ (b) Using the method of completing the square, find the coordinates of the vertex of the locus of P.
21. $F(6,3)$ is a point in a rectangular coordinate plane. A point $P(x, y)$ maintains an equal distance from the point F and the line $y=5$. The locus of P intersects the x-axis at two points A and B.
(a) Find the equation of the locus of P.

Explain (b) If R is a point on the locus of P and R lies above the x-axis, can the area of $\triangle R A B$ exceed 16 ? Explain your answer.
22. In the figure, $A(8,6)$ and $B(2,-2)$ are two points in a rectangular coordinate plane. A point $P(x, y)$ moves such that $\angle A P B=90^{\circ}$.
(a) Find the equation of the locus of P.
(b) Describe the locus of P.

23. $A(7,-1)$ and $B(4,5)$ are two points in a rectangular coordinate plane. A point $P(x, y)$ moves such that $P A \perp P B$.
(a) Find the equation of the locus of P.

24. $A(3,7)$ and $B(-5,1)$ are two points in a rectangular coordinate plane. A point $P(x, y)$ moves such that $A P^{2}+P B^{2}=A B^{2}$.
(a) Find the equation of the locus of P.
(b) If a point Q lies on the locus of P and the x-coordinate of Q is -1 , find the possible coordinates of Q.
25. In a rectangular coordinate plane, a moving point $P(x, y)$ maintains a fixed distance of 4 from the line $y=-3$ and P lies above the line $y=-3$.
(a) Find the equation of the locus of P.
(b) $A(3,-4)$ is reflected to A^{\prime} with the locus of P as the axis of reflection. A^{\prime} is then rotated clockwise about the origin O through 90° to B. Find the coordinates of B.
26. $A(-5,13)$ and $B(-3,-1)$ are the end points of a diameter of a circle C.
(a) Find the equation of C in the standard form.
(b) $P(x, y)$ is a moving point in the rectangular coordinate plane such that $A P=P B$.
(i) Find the equation of the locus of P.
(ii) If the locus of P cuts C at Q and R, find the perimeter of $\triangle A Q R$.
(Leave the radical sign ' $\sqrt{ }$ ' in the answer.)
27. The line $L: 4 x+3 y-12=0$ cuts the x-axis and the y-axis at the points A and B respectively. $C(c, 0)$ is a point on the x-axis such that the area of $\triangle A B C$ is twice the area of $\triangle O A B$.
(a) Find the values of c.
(b) Take c as the larger value obtained in (a). $P(x, y)$ is a moving point on the right of L in the rectangular coordinate plane such that the area of $\triangle P A B$ is equal to that of $\triangle A B C$.
(i) Describe the geometric relationship between the locus of P and L.
(ii) Find the equation of the locus of P.
$8 * 28$. $A(0,2), B(14,10)$ and $C(16,0)$ are three points in a rectangular coordinate plane. G is the centroid of $\triangle A B C$.
(a) Find the coordinates of G.
(b) A point $P(x, y)$ moves such that $P G=P C$.
(i) Find the equation of the locus of P.
(ii) Describe the geometric relationship between the locus of P and the line segment $B G$.
$\xrightarrow{\text { Explain }}$ (iii) Does the height of $\triangle P B G$ with $B G$ as the base change when P moves? Explain your answer.
*29. $A(-1,-3)$ is rotated anticlockwise about the origin O through 90° to $A^{\prime} . B^{\prime}$ is the image when $B(-9,-1)$ is reflected in the y-axis. A point $P(x, y)$ moves such that $A^{\prime} P \perp P B^{\prime}$.
(a) Write down the coordinates of A^{\prime} and B^{\prime}.
(b) Find the equation of the locus of P.

8 (c) Find the coordinates of the circumcentre of $\triangle A^{\prime} P B^{\prime}$.
$\&(\mathrm{~d})$ Let Q be the centroid of $\triangle A^{\prime} P B^{\prime}$. When P moves, find the equation of the locus of Q.
$8<*$ 30. In the figure, two lines $L_{1}: x=3$ and $L_{2}: x-\sqrt{3} y=0$ intersect at a point A. A point $P(x, y)$ lies below L_{2} and on the left of L_{1}, where $x<3$. When P moves, it maintains an equal distance from L_{1} and L_{2}. Denote the locus of P by Γ.
(a) Find the inclination of Γ. Hence, find the equation of Γ, where $x<3$.
(b) C is a circle with centre G lying below the x-axis. L_{1} touches C and L_{2} is the tangent to C at $Q(-3,-\sqrt{3})$.

(i) Find the equation of C.
(ii) If Γ intersects the x-axis at R, find the ratio of the area of $\triangle Q G R$ to that of $\triangle Q R A$.
(Leave the radical sign ' $\sqrt{ }$ ' in the answers if necessary.)
$8<*$ 31. In the figure, $A(-15,0), B(5,0)$ and $C(-3,12)$ are three points in a rectangular coordinate plane. H is the orthocentre of $\triangle A B C$.
(a) Find the coordinates of H.
(b) A moving point $P(x, y)$ maintains an equal distance from B and H.
(i) Find the equation of the locus of P.
$\xrightarrow{\text { Explain (ii) Do the locus of } P \text { and the straight line passing through } A \text { and } C}$
 intersect? Explain your answer.
(iii) Suppose the locus of P intersects $B C$ and the x-axis at D and E respectively. Find the ratio of the area of $\triangle B D E$ to that of the quadrilateral $D E A C$.

Answers

Consolidation Exercise 8B

1. $(x+2)^{2}+y^{2}=4$
2. $(x+1)^{2}+(y-1)^{2}=13$
3. $(x-12)^{2}+(y-9)^{2}=196$
4. $(x-7)^{2}+(y+4)^{2}=21$
5. (a) $y=2$
(b)The locus of P is parallel to the line $y=1$.
6. (a) $x=-\frac{7}{2}$
(b) The locus of P is perpendicular to the x axis.
7. (a) the perpendicular bisector of $E F$
(b) $2 x-3 y+5=0$
8. (a) $x+3 y-3=0$
(b) The locus of P is perpendicular to L.
9. $x-5 y+17=0$
10. $3 x+y+6=0$
11. $8 x^{2}+8 y^{2}-42 x-24 y+45=0$
12. $3 x^{2}+3 y^{2}-42 x-44 y+275=0$
13. (a) The locus of P is a parabola opening upward.
(b) $x^{2}-2 x-4 y+5=0$
14. (a) $x^{2}-12 x+4 y+40=0$
(b) -10
15. $x^{2}+14 x-14 y+98=0$
16. $x^{2}+8 x+6 y+25=0$
17. (a) $x=-1$
(b) no
18. (a) $(x-3)^{2}+(y-2)^{2}=25$
(b) $(x-3)^{2}+(y-2)^{2}=9$
(c) The loci of P and Q are concentric circles.
19. (a) $x^{2}+10 x-8 y+25=0$
(b) no
20. (a) $x^{2}-8 x+6 y+1=0$
(b) $\left(4, \frac{5}{2}\right)$
21. (a) $x^{2}-12 x+4 y+20=0$ (b) no
22. (a) $x^{2}+y^{2}-10 x-4 y+4=0$, excluding points $A(8,6)$ and $B(2,-2)$
(b) The locus of P is a circle with centre $(5,2)$ and radius 5 , excluding points A and B.
23. (a) $x^{2}+y^{2}-11 x-4 y+23=0$, excluding points $A(7,-1)$ and $B(4,5)$
(b) no
24. (a) $x^{2}+y^{2}+2 x-8 y-8=0$
(b) $(-1,-1),(-1,9)$
25. (a) $y=1$
(b) $(6,-3)$
26. (a) $(x+4)^{2}+(y-6)^{2}=50$
(b) $x-7 y+46=0$
(c) $20+2 \sqrt{50}($ or $20+10 \sqrt{2})$
27. (a) $-3,9$
(b) (i) The locus of P is a straight line parallel to L and passing through C.
(ii) $4 x+3 y-36=0$
28. (a) $(10,4)$
(b) (i) $3 x-2 y-35=0$
(ii) The locus of P is parallel to the line segment $B G$.
(iii) no
29. (a) $A^{\prime}:(3,-1), B^{\prime}:(9,-1)$
(b) $x^{2}+y^{2}-12 x+2 y+28=0$, excluding points $A^{\prime}(3,-1)$ and $B^{\prime}(9,-1)$
(c) $(6,-1)$
(d) $(x-6)^{2}+(y+1)^{2}=1$, excluding points $(5,-1)$ and $(7,-1)$
30. (a) inclination of $\Gamma: 60^{\circ}$, equation of $\Gamma: \sqrt{3} x-y-2 \sqrt{3}=0$
(b) (i) $(x+1)^{2}+(y+3 \sqrt{3})^{2}=16$
(ii) $3: 1$
31. (a) $(-3,8)$
(b) $\begin{array}{ll}\text { (i) } x-y+3=0 & \text { (ii) no } \\ \text { (iii) } 4: 2 & \end{array}$

F5B: Chapter 9A			
Date	Task	Progress	
	Lesson Worksheet	Complete and Checked Problems encountered Skipped	
	Book Example 1	Complete Problems encountered Skipped	
	Book Example 2	Complete Problems encountered Skipped	
	Book Example 3	Complete Problems encountered Skipped	(Video Teaching)
	Book Example 4	Complete Problems encountered Skipped	
	Book Example 5	Complete Problems encountered Skipped	
	Book Example 6	Complete Problems encountered Skipped	
	Consolidation Exercise	Complete and Checked Problems encountered Skipped	
	Maths Corner Exercise 9A Level 1	Complete and Checked Problems encountered Skipped	Teacher's Signature

Maths Corner Exercise 9A Level 2	Complete and Checked Problems encountered Skipped	Teacher's Signature	$\overline{(\quad)}$
Maths Corner Exercise 9A Multiple Choice	Complete and Checked Problems encountered Skipped	Teacher's Signature)
E-Class Multiple Choice Self-Test	Complete and Checked Problems encountered Skipped		

Objective: To review Pythagoras' theorem, trigonometric ratios and trigonometric equations.
[In this worksheet, give the answers correct to 3 significant figures if necessary.]

Pythagoras' Theorem and Trigonometric Ratios

In each of the following, find the value of x. [Nos. 1-2]
1.

$$
\begin{aligned}
(\quad)^{2}+(\quad)^{2} & =(\quad)^{2} \\
x^{2} & =(\quad) \\
x & =\square
\end{aligned}
$$

In each of the following, find the values of x and y. [Nos. 3-4]

3. $\tan 32^{\circ}=\frac{(\quad)}{(\quad)}$

$$
\begin{aligned}
x & =(\quad)(\quad, \text { cor. to } \\
& =\underline{\square}
\end{aligned}
$$

4.

3 sig. fig.

$$
\cos 32^{\circ}=\frac{(\quad)}{(\quad)}
$$

$$
y=\frac{(\quad)}{(\quad)}
$$

$$
=
$$

\qquad cor. to 3 sig. fig.

2.
7. In the figure, $A B=8 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $\angle D A C=40^{\circ} . \angle A B C$ and $\angle A C D$ are right angles. Find the area of $\triangle A C D$.

Trigonometric Equations

Solve the following equations, where $0^{\circ}<\theta<180^{\circ}$. [Nos. 8-11]
8. $\sin \theta=0.8$

$=$ \qquad or \qquad , cor to 3 sig. fig.
$\because \sin \theta(</>) 0$
$\therefore \theta$ lies in quadrant () or quadrant ().
10. $3 \cos \theta=-2$
9. $\tan \theta=-0.7$
\Leftrightarrow Review Ex: 3

Note that $0^{\circ}<\theta<180^{\circ}$.

11. $4 \tan \theta=9$

人̂Level Up Question介

12. In the figure, $A B=10 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $\angle A B C=130^{\circ}$. Find the area of $\triangle A B C$.

When $B C$ is the base, what is the height of $\triangle A B C$?

5B Lesson Worksheet 9.1A

Objective: To use the sine formula to find unknown side/angle when two angles and one side are given.
[In this worksheet, give the answers correct to 3 significant figures if necessary.]

Sine Formula

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Denote $\angle A, \angle B$ and $\angle C$ by A, B and C respectively. Denote the lengths of the sides opposite to $\angle A, \angle B$ and $\angle C$ by a, b and c respectively.

Given Two Angles and One Side (AAS or ASA)

If two angles and one side of a triangle are given, the triangle can be solved by the following steps.
(i) Use the angle sum of triangle to find the remaining angle.
(ii) Use the sine formula to find the other two sides.

Instant Example 1

In $\triangle A B C, A=65^{\circ}, C=85^{\circ}$ and $b=15 \mathrm{~cm}$. Solve the triangle.

$$
\begin{array}{rlrl}
A+B+C & =180^{\circ} \quad(\angle \text { sum of } \triangle) \\
65^{\circ}+B+85^{\circ} & =180^{\circ} & \\
B & =\underline{\underline{30^{\circ}}} \quad \triangleleft \text { Step (i) }
\end{array}
$$

By the sine formula, \quad Step (ii)

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{a}{\sin 65^{\circ}} & =\frac{15 \mathrm{~cm}}{\sin 30^{\circ}} \\
a & =\frac{15 \sin 65^{\circ}}{\sin 30^{\circ}} \mathrm{cm} \\
& =\underline{27.2 \mathrm{~cm}}, \text { cor. to } 3 \text { sig. fig. } \\
\frac{c}{\sin C} & =\frac{b}{\sin B} \\
\frac{c}{\sin 85^{\circ}} & =\frac{15 \mathrm{~cm}}{\sin 30^{\circ}} \\
c & =\frac{15 \sin 85^{\circ}}{\sin 30^{\circ}} \mathrm{cm} \\
& =\underline{29.9 \mathrm{~cm}, \text { cor. to } 3 \text { sig. fig. }}
\end{aligned}
$$

Instant Practice 1

In $\triangle A B C, A=22^{\circ}, C=123^{\circ}$ and $c=30 \mathrm{~cm}$. Solve the triangle.

$$
A+B+C=180^{\circ}
$$

$$
(\quad)+B+(\quad)=180^{\circ}
$$

$$
B=
$$

\qquad

1. In $\triangle A B C, B=30^{\circ}, C=20^{\circ}$ and $a=9 \mathrm{~cm}$. Solve the triangle.

$A+B+C=180^{\circ}$

2. In $\triangle A B C, B=72^{\circ}, C=48^{\circ}$ and $b=13 \mathrm{~cm}$. Solve the triangle.
\rightarrow Ex 9A: 7-9

吕Level Up Question昘

3. In $\triangle A B C, A=50^{\circ}$ and $B=25^{\circ}$.
$\stackrel{\text { Explain }}{\longrightarrow}$ (a) Is it true that $B C=2 A C$? Explain your answer.
(b) If $B C=10 \mathrm{~cm}$, is it possible that $A B>13 \mathrm{~cm}$? Explain your answer.

5B Lesson Worksheet 9.1B

Objective: To use the sine formula to find unknown side/angle when two sides and one opposite angle are given. [In this worksheet, give the answers correct to 3 significant figures if necessary.]

Sine Formula: Given Two Sides and One Opposite Angle (SSA)

Instant Example 1

In the figure, find θ.
By the sine formula,

$$
\begin{aligned}
\frac{15 \mathrm{~cm}}{\sin \theta} & =\frac{18 \mathrm{~cm}}{\sin 35^{\circ}} \\
\sin \theta & =\frac{15 \sin 35^{\circ}}{18}
\end{aligned}
$$

$\theta=\underline{\underline{28.6^{\circ}}}$, cor. to 3 sig. fig.

Instant Practice 1

In the figure, find θ.
By the sine formula,
$\frac{(\quad)}{\sin \theta}=\frac{(\quad)}{\sin (\quad)}$
 $\sin \theta=\frac{(\quad) \sin (\quad)}{(\quad)}$
$\theta=$ \qquad , cor. to 3 sig. fig.

In each of the following triangles, find θ. [Nos. 1-4]

1. By the sine formula,

2. θ is obtuse.

When two sides a, b and one acute opposite angle A are given, the number of triangles that can be formed is 0,1 or 2 . In each figure below, let h be the perpendicular distance from the vertex C to its opposite side, where $h=b \sin A$.

Case 1: $\boldsymbol{a}<\boldsymbol{h}$	Case 2: $\boldsymbol{a} \boldsymbol{=} \boldsymbol{h}$	Case 3: $\boldsymbol{h}<\boldsymbol{a}<\boldsymbol{b}$	Case 4: $\boldsymbol{a} \geq \boldsymbol{b}$
No triangles can be formed.	One triangle is formed.	Two triangles are formed.	One triangle is formed.

Instant Example 2

Determine whether $\triangle A B C$ can be formed if $A=40^{\circ}, c=7 \mathrm{~cm}$ and $a=3 \mathrm{~cm}$.

By the sine formula,

$$
\begin{aligned}
\frac{7 \mathrm{~cm}}{\sin C} & =\frac{3 \mathrm{~cm}}{\sin 40^{\circ}} \\
\sin C & =\frac{7 \sin 40^{\circ}}{3} \\
& =1.50, \text { cor. to } 3 \text { sig. fig. } \\
& >1
\end{aligned}
$$

\therefore There is no solution for C.
$\therefore \triangle A B C$ cannot be formed.

In each of the following, determine whether $\triangle A B C$ can be formed. [Nos. 5-6]
5. $B=30^{\circ}, a=4 \mathrm{~cm}, b=2 \mathrm{~cm}$
6. $C=70^{\circ}, b=12 \mathrm{~cm}, c=10 \mathrm{~cm}$

By the sine formula,

$$
\frac{(\quad)}{\sin A}=\frac{(\quad)}{\sin (\quad)}
$$

For any θ,
$-1 \leq \sin \theta \leq 1$.

令Level Up Question令

7. In $\triangle A B C, B=30^{\circ}$ and $A B=20 \mathrm{~cm}$.
(a) Kelvin claims that the minimum length of $A C$ is 10 cm . Do you agree? Explain your answer.
(b) Find the range of the length of $A C$ such that two triangles can be formed.

9 Solving Triangles

8 Consolidation Exercise 9A

[In this exercise, unless otherwise stated, give the answers correct to 3 significant figures if necessary.]

Level 1

In each of the following triangles, find the value of x. [Nos. 1-6]
1.

2.

4.

5.

6.

Solve the following triangles. [Nos. 7-9]
7.

8.

9.

In each of the following triangles, find θ. [Nos. 10-15]
10.

11.

12. θ is acute.

13.

14.

15. θ is obtuse.

In each of the following, determine whether $\triangle A B C$ can be formed. If yes, find C. [Nos. 16-19]
16. $A=25^{\circ}, a=11 \mathrm{~cm}, c=27 \mathrm{~cm}$
17. $A=74^{\circ}, a=16 \mathrm{~cm}, c=9 \mathrm{~cm}$
18. $B=135^{\circ}, c=7 \mathrm{~cm}, b=2 \mathrm{~cm}$
19. $B=103^{\circ}, a=8 \mathrm{~cm}, b=3 \sqrt{5} \mathrm{~cm}$
20. In the figure, $A C D$ and $B C E$ are two straight lines. $C E=10 \mathrm{~cm}$, $D E=8 \mathrm{~cm}, \angle A B C=72^{\circ}$ and $\angle B A C=60^{\circ}$.
(a) Find $\angle D C E$.
(b) If $\angle C D E$ is an acute angle, find $\angle C D E$.

21. In the figure, $A B C$ is a straight line and $B D=C D . A D=16 \mathrm{~cm}$, $\angle B A D=55^{\circ}$ and $\angle B C D=61^{\circ}$.
(a) Find $\angle A D B$.
(b) Find the length of $A B$.

22. In the figure, P, Q, R and S are points on a circle. $P R=19 \mathrm{~cm}$, $P S=11 \mathrm{~cm}$ and $\angle P Q R=67^{\circ}$.
(a) Find $\angle S P R$.

Explain (b) Is $\triangle P R S$ an isosceles triangle? Explain your answer.

Level 2

23. In each of the following, find a in $\triangle A B C$.
(a) $B=65^{\circ}, C=20^{\circ}, b=7 \mathrm{~cm}$
(b) $B=57^{\circ}, C=43^{\circ}, c=18.5 \mathrm{~cm}$
24. In each of the following, find B in $\triangle A B C$.
(a) $C=62^{\circ}, b=18 \mathrm{~cm}, c=17 \mathrm{~cm}$
(b) $A=47^{\circ}, a=11 \mathrm{~cm}, b=15 \mathrm{~cm}$
(c) $C=124^{\circ}, b=4.2 \mathrm{~cm}, c=8.6 \mathrm{~cm}$

In each of the following, determine whether a triangle can be formed. If yes, solve the triangle. [Nos. 25-

26]

25. (a) In $\triangle A B C, A=31^{\circ}, C=13^{\circ}$ and $c=11 \mathrm{~cm}$.
(b) In $\triangle L M N, L=59^{\circ}, M=35^{\circ}$ and $n=4.5 \mathrm{~cm}$.
(c) In $\triangle D E F, E=101^{\circ}, F=29^{\circ}$ and $d=17.5 \mathrm{~cm}$.
26. (a) In $\triangle A B C, B=47^{\circ}, b=4 \mathrm{~cm}$ and $c=14 \mathrm{~cm}$.
(b) In $\triangle P Q R, Q=99^{\circ}, p=17 \mathrm{~cm}$ and $q=19 \mathrm{~cm}$.
(c) In $\triangle R S T, T=21^{\circ}, s=8.5 \mathrm{~cm}$ and $t=4.1 \mathrm{~cm}$.
(d) In $\triangle X Y Z, Y=51^{\circ}, x=6.5 \mathrm{~cm}$ and $y=5.5 \mathrm{~cm}$.
27. It is given that $D E=21 \mathrm{~cm}$ and $\angle D E F=30^{\circ}$. Find the range of the length of $D F$ such that
(a) only one triangle can be formed,
(b) two triangles can be formed.
28. In the figure, $Z=30^{\circ}$ and $Y Z: X Y=2: 3$.
(a) Find X.
(b) Find the value of $\frac{X Z}{X Y}$.

29. In the figure, $A B=A C$ and $A=120^{\circ}$.
(a) Find $B C: A C: A B$.
(Leave the radical sign ' $\sqrt{ }$ ' in the answer.)
(b) If $B C=9 \mathrm{~cm}$, find the perimeter of $\triangle A B C$.

30. In the figure, $A B=9 \mathrm{~cm}, A C=12 \mathrm{~cm}, \angle B C D=39^{\circ}, \angle C D B=82^{\circ}$ and $\angle B A C$ is a right angle.
(a) Find the length of $B D$.
(b) Find the perimeter of the quadrilateral $A B D C$.

31. In the figure, $B C=11.5 \mathrm{~cm}, C D=7.8 \mathrm{~cm}, \angle A B C=74^{\circ}, \angle A C D=$ 56° and $\angle A D C=83^{\circ}$.
(a) Find $\angle B A C$.
(b) Find the perimeter of $\triangle A B C$.
32. In the figure, $P Q=R S=7 \mathrm{~cm}, \angle P Q R=81^{\circ}$ and $\angle P R Q=46^{\circ}$. $\angle Q P S$ is a right angle and $\angle P S R$ is an acute angle.
(a) Find the length of $P R$.
(b) Find the length of $P S$.
33. In the figure, $B D C$ is a straight line. $\angle B A D=2 \angle D A C, \angle A B D=68^{\circ}$ and $A B=A D=8 \mathrm{~cm}$.
(a) Find the length of $B C$.
$\xrightarrow{\text { Explain }}$ (b) Which triangle, $\triangle A B D$ or $\triangle A D C$, has a greater perimeter? Explain your answer.

34. In the figure, $P Q / / R S, P R=8.9 \mathrm{~cm}, Q R=15.5 \mathrm{~cm}, Q S=9.2 \mathrm{~cm}$ and $\angle Q P R=73^{\circ} . R S$ is the longest side in $\triangle Q R S$.
(a) Find $\angle Q R S$.
(b) Find the length of $R S$.
35. In the figure, $A B / / D C, A B=18 \mathrm{~cm}, D C=12 \mathrm{~cm}, \angle D A B=125^{\circ}$ and $\angle D C B=145^{\circ}$.
(a) Find the length of $B C$.
(b) Find the length of $A D$.
36. The figure shows a trapezium $A B C D$, where $A B / / D C . A B=10 \mathrm{~cm}$, $A D=6 \mathrm{~cm}, \angle A B C=50^{\circ}$ and $\angle B A D=99^{\circ}$.
(a) Find the lengths of $B C$ and $C D$.
(b) Find the area of $A B C D$.

37. In the figure, $A B C, B E D$ and $F E C$ are straight lines. $B D$ bisects $\angle C B F . B C=C D, \angle A B F=2 \angle A F B, B E=11 \mathrm{~cm}, \angle A C F=53^{\circ}$ and $\angle C A F=33^{\circ}$.
$\xrightarrow{\text { Explain }}$
(a) Is $B F$ parallel to $C D$? Explain your answer.
(b) Find the lengths of $A F$ and $C D$.

Explain (c) Suppose $B D$ is a chord of a circle with centre at C. Does the circle pass through F ? Explain your answer.
38. In the figure, A, B, C and D are concyclic. $A C$ and $B D$ intersect at E. $\angle A B D=20^{\circ}, \angle A D B=55^{\circ}$ and $\angle B A C=15^{\circ}$.
(a) Prove that the line segment joining C and D is a diameter of the circle passing through A, B, C and D.
$\xrightarrow{\text { Explain (b) Someone claims that area of } \triangle A D E}$ area of $\triangle B C E \quad=\frac{\sin ^{2} 20^{\circ}}{\sin ^{2} 15^{\circ}}$. Do you agree?
Explain your answer.
(c) If $A D=6 \mathrm{~cm}$, find the perimeter of the polygon $A B C E D$.

* 39. In the figure, $A B C D E$ is a pentagon, where $A E=D E$ and $A E / / B C$. I is the in-centre of $\triangle C D E . \angle A B C=\angle D C E, C D=10 \mathrm{~cm}$, $\angle B C E=72^{\circ}, \angle C D E=85^{\circ}$ and $\angle D E I=21^{\circ}$. Find the perimeter of ABCDE.

*40. In the figure, $D E F$ is a straight line. The area of the rectangle $A C E G$ is $30 \mathrm{~cm}^{2} . A B=6 \mathrm{~cm}, B C=4.5 \mathrm{~cm}, C D=5 \mathrm{~cm}, \angle A B C=$ $90^{\circ}, \angle C D E=27^{\circ}$ and $\angle E G F=47^{\circ}$. Find the area of the polygon ABCDFG.

*41. In the figure, G is the centre of the circle and the radius of the circle is $15 \mathrm{~cm} . D$ is a point on $G A$ such that $D G=13 \mathrm{~cm}$ and $\angle C D G=73^{\circ} . B C$ is the tangent to the circle at $C . \angle A B C$ is an acute angle and $A B=8 \mathrm{~cm}$.
(a) Find $\angle C G D$.

Hence, find the length of the $C D$.
(b) Solve $\triangle A B C$.

Answers

Consolidation Exercise 9A

1. 6.13
2. 6.91
3. 3.85
4. 5.90
5. 2.07
6. 4
7. $B=57^{\circ}, A C=26.0 \mathrm{~cm}, B C=17.8 \mathrm{~cm}$
8. $C=35^{\circ}, A C=12.4 \mathrm{~cm}, B C=27.8 \mathrm{~cm}$
9. $B=52^{\circ}, A B=27.9 \mathrm{~cm}, B C=18.3 \mathrm{~cm}$
10. 40.1°
11. 33.5°
12. 71.0°
13. 30°
14. 76.8°
15. 135°
16. no
17. yes, 32.7°
18. no
19. no
20. (a) 48°
(b) 68.3°
21. (a) 6°
(b) 1.91 cm
22. (a) 34.8°
(b) no
23. (a) 7.69 cm
(b) 26.7 cm
24. (a) 69.2° or 111°
(b) 85.8° or 94.2°
(c) 23.9°
25. (a) yes, $B=136^{\circ}, a=25.2 \mathrm{~cm}, b=34.0 \mathrm{~cm}$
(b) yes, $N=86^{\circ}, \ell=3.87 \mathrm{~cm}, m=2.59 \mathrm{~cm}$
(c) yes, $D=50^{\circ}, e=22.4 \mathrm{~cm}, f=11.1 \mathrm{~cm}$
26. (a) no
(b) yes, $P=62.1^{\circ}, R=18.9^{\circ}, r=6.23 \mathrm{~cm}$
(c) yes, $R=111^{\circ}, S=48.0^{\circ}, r=10.7 \mathrm{~cm}$ or $R=27.0^{\circ}, S=132^{\circ}, r=5.19 \mathrm{~cm}$
(d) yes, $X=66.7^{\circ}, Z=62.3^{\circ}, z=6.27 \mathrm{~cm}$ or
$X=113^{\circ}, Z=15.7^{\circ}, z=1.92 \mathrm{~cm}$
27. (a) $D F=10.5 \mathrm{~cm}$ or $D F \geq 21 \mathrm{~cm}$
(b) $10.5 \mathrm{~cm}<D F<21 \mathrm{~cm}$
28. (a) 19.5°
(b) 1.52
29. (a) $\sqrt{3}: 1: 1$
(b) 19.4 cm
30. (a) 9.53 cm
(b) 43.5 cm
31. (a) 69.5°
(b) 30.6 cm
32. (a) 9.61 cm
(b) 11.6 cm
33. (a) 10.2 cm
(b) $\triangle A D C$
34. (a) 33.3°
(b) 16.4 cm
35. (a) 14.4 cm
(b) 10.1 cm
36. (a) $B C=7.74 \mathrm{~cm}, C D=5.97 \mathrm{~cm}$
(b) $47.3 \mathrm{~cm}^{2}$
37. (a) yes
(b) $A F=28.2 \mathrm{~cm}, C D=13.7 \mathrm{~cm}$
(c) no
38. (b) yes
(c) 43.3 cm
39. 78.8 cm
40. $69.6 \mathrm{~cm}^{2}$
41. (a) $\angle C G D=51.0^{\circ}, C D=12.2 \mathrm{~cm}$
(b) $\angle A B C=44.1^{\circ}, \angle A C B=25.5^{\circ}$, $\angle B A C=110^{\circ}, A C=12.9 \mathrm{~cm}$, $B C=17.4 \mathrm{~cm}$

5B Lesson Worksheet 9.2A

Objective: To use the cosine formula to find unknown side/angle when two sides and their included angle are given.
[In this worksheet, give the answers correct to 3 significant figures if necessary.]

Cosine Formula

$$
\begin{array}{l|l|l}
a^{2}=b^{2}+c^{2}-2 b c \cos A & b^{2}=c^{2}+a^{2}-2 c a \cos B & c^{2}=a^{2}+b^{2}-2 a b \cos C \\
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} & \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a} & \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{array}
$$

Given Two Sides and Their Included Angle (SAS)

If two sides and their included angle of a triangle are given, the triangle can be solved by the following steps.
(i) Use the cosine formula to find the remaining side.
(ii) Use the cosine formula / the sine formula and the angle sum of triangle to find the other two angles.

Instant Example 1

In $\triangle A B C, a=9 \mathrm{~cm}, b=4 \mathrm{~cm}$ and $C=105^{\circ}$. Solve the triangle.

By the cosine formula, \leqslant Step (i)
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

$$
c=\sqrt{9^{2}+4^{2}-2 \times 9 \times 4 \times \cos 105^{\circ}} \mathrm{cm}
$$

$$
=10.8 \mathrm{~cm} \text {, cor. to } 3 \text { sig. fig. } \quad 10.753
$$

By the cosine formula, $\boldsymbol{4}$ Step (ii)

$$
A=\underline{\underline{53.9^{\circ}}} \text {, cor. to } 3 \text { sig. fig. }
$$

$$
A+B+C=180^{\circ} \quad(\angle \operatorname{sum} \text { of } \triangle)
$$

$53.948^{\circ}+B+105^{\circ}=180^{\circ}$

$$
B=\underline{\underline{21.1^{\circ}}} \text {, cor. to } 3 \text { sig. fig. }
$$

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{4^{2}+10.753^{2}-9^{2}}{2 \times 4 \times 10.753} \\
& \text { By the sine formula, } \\
& \frac{a}{\sin A}=\frac{c}{\sin C} \\
& \frac{9 \mathrm{~cm}}{\sin A}=\frac{10.753 \mathrm{~cm}}{\sin 105^{\circ}}
\end{aligned}
$$

Instant Practice 1

In $\triangle A B C, a=32 \mathrm{~cm}, c=12 \mathrm{~cm}$ and $B=48^{\circ}$. Solve the triangle.

By the cosine formula,
$b^{2}=(\quad)^{2}+(\quad)^{2}-2(\quad)(\quad) \cos (\quad)$ $b=\left[\begin{array}{ll}(\quad)^{2}+(\quad)^{2}-\end{array}\right.$
$=$ \qquad , cor to 3 sig. fig.

By the cosine formula,

$$
\cos C=\frac{()^{2}+(\quad)^{2}-()^{2}}{2()(\quad)}
$$

$$
=\frac{(\quad)^{2}+(\quad)^{2}-(\quad)^{2}}{2 \times(\quad) \times(\quad)}
$$

$C=$ \qquad , cor. to 3 sig. fig. \square

1. In $\triangle A B C, a=18 \mathrm{~cm}, b=13 \mathrm{~cm}$ and $C=62^{\circ}$. Solve the triangle.

By the cosine formula,
 $c^{2}=(\quad)^{2}+(\quad)^{2}-2(\quad)(\quad) \cos (\quad)$
2. In $\triangle A B C, a=16 \mathrm{~cm}, c=22 \mathrm{~cm}$ and $B=136^{\circ}$.

Solve the triangle.
\rightarrow Ex 9B: 10, 11

You may find A or B in the second step.

吕Level Up Question令

3. In $\triangle A B C, b=3, c=7, C=60^{\circ}$ and A is an obtuse angle.
(a) Find a by the cosine formula.
(b) Find a by the sine formula.

5B Lesson Worksheet 9.2B

Objective: To use the cosine formula to find unknown side/angle when three sides are given.
[In this worksheet, give the answers correct to 3 significant figures if necessary.]

Cosine Formula: Given Three Sides (SSS)

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \quad \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a} \quad \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Instant Example 1

In $\triangle A B C, a=7 \mathrm{~cm}, b=9 \mathrm{~cm}$ and $c=5 \mathrm{~cm}$. Solve the triangle.

By the cosine formula,

$$
\begin{aligned}
\cos B & =\frac{c^{2}+a^{2}-b^{2}}{2 c a} \\
& =\frac{5^{2}+7^{2}-9^{2}}{2 \times 5 \times 7}
\end{aligned}
$$

The largest angle is opposite to the longest side. Find the largest angle first. Then the remaining two angles must be acute.

$$
B=\underline{\underline{95.7^{\circ}}} \text {, cor. to } 3 \text { sig. fig. }
$$

95.739

By the cosine formula,

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

$$
=\frac{7^{2}+9^{2}-5^{2}}{2 \times 7 \times 9}
$$

$$
C=\underline{33.6^{\circ}} \text {, cor. to } 3 \text { sig. fig. } 33.557
$$

$$
A+B+C=180^{\circ} \quad(\angle \text { sum of } \triangle)
$$

$$
A+95.739^{\circ}+33.557^{\circ}=180^{\circ}
$$

$$
A=\underline{\underline{50.7^{\circ}}} \text {, cor. to } 3 \text { sig. fig. }
$$

In $\triangle A B C, a=21 \mathrm{~cm}, b=30 \mathrm{~cm}$ and $c=18 \mathrm{~cm}$.
Find A.
By the cosine formula,
$\cos A=\frac{()^{2}+()^{2}-()^{2}}{2(\quad)(\quad)}$

Instant Practice 1

In $\triangle A B C, a=12 \mathrm{~cm}$,
$b=10 \mathrm{~cm}$ and $c=13 \mathrm{~cm}$.
Solve the triangle.
By the cosine formula,

$$
\begin{aligned}
\cos C & =\frac{(\quad)^{2}+(\quad)^{2}-(\quad)^{2}}{2()()} \\
& =\frac{()^{2}+(\quad)^{2}-(\quad)^{2}}{2 \times() \times()}
\end{aligned}
$$

$C=$ \qquad , cor. to 3 sig. fig.

By the cosine formula,

$$
\begin{aligned}
& \cos B=\frac{(\quad)^{2}+(\quad)^{2}-(\quad)^{2}}{2(\quad)(\quad)} \\
& =\frac{(\quad)^{2}+(\quad)^{2}-(\quad)^{2}}{2 \times(\quad) \times(\quad)} \\
& B=\Longrightarrow \text {, cor. to } 3 \text { sig. fig. } \\
& A+B+C=180^{\circ} \\
& A+(\quad)+(\quad)=180^{\circ} \\
& A= \\
& \text {, cor. to } 3 \text { sig. fig. }
\end{aligned}
$$

2.

In $\triangle A B C, a=8 \mathrm{~cm}, b=22 \mathrm{~cm}$ and $c=28 \mathrm{~cm}$.
Find B.
\rightarrow Ex 9B: 5-9

Solve the following triangles. [Nos. 3-4]
\rightarrow Ex 9B: 12
3.

4.

5. In $\triangle A B C, a=15 \mathrm{~cm}$, $b=23 \mathrm{~cm}$ and $c=13 \mathrm{~cm}$. Find the largest angle of $\triangle A B C$.

6. In $\triangle A B C, a=27 \mathrm{~cm}$, $b=24 \mathrm{~cm}$ and $c=11 \mathrm{~cm}$. Find the smallest angle of $\triangle A B C$.

- Ex 9B: 15,16

In a triangle, the smallest angle is opposite to the shortest side.

食Level Up Question倉

7. In the figure, $A C D$ is a straight line. $A B=48 \mathrm{~cm}, A C=13 \mathrm{~cm}, B C=43 \mathrm{~cm}$ and $C D=17 \mathrm{~cm}$.
(a) Find $\angle B A C$.
(b) Hence, find $B D$.

9 Solving Triangles

8 Consolidation Exercise 9B

[In this exercise, give the answers correct to 3 significant figures if necessary.]

Level 1

In each of the following triangles, find the unknown. [Nos. 1-9]
1.

2.

3.

4.

5.

6.

7.

8.

9.

Solve the following triangles. [Nos. 10-12]
10.

11.

12.

13. In each of the following, find a in $\triangle A B C$.
(a) $b=9 \mathrm{~cm}, c=11 \mathrm{~cm}, A=45^{\circ}$
(b) $b=6 \mathrm{~cm}, c=14 \mathrm{~cm}, A=70^{\circ}$
(c) $b=37 \mathrm{~cm}, c=23 \mathrm{~cm}, A=106^{\circ}$
(d) $b=15 \mathrm{~cm}, c=28 \mathrm{~cm}, A=123^{\circ}$
14. In each of the following, find Q in $\triangle P Q R$.
(a) $p=10 \mathrm{~cm}, q=15 \mathrm{~cm}, r=13 \mathrm{~cm}$
(b) $p=22 \mathrm{~cm}, q=26 \mathrm{~cm}, r=11 \mathrm{~cm}$
15. In the figure, $E F=17.5 \mathrm{~cm}, D F=20.5 \mathrm{~cm}$ and $D E=20 \mathrm{~cm}$. Find the largest angle of $\triangle D E F$.

16. In the figure, $A C=9 \mathrm{~cm}, B C=13 \mathrm{~cm}$ and $\angle A C B=49^{\circ}$.
(a) Find the length of $A B$.
(b) Find the smallest angle of $\triangle A B C$.

17. In the figure, $A B C D$ is a parallelogram. $A B=11 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $B D=10 \mathrm{~cm}$. Find $\angle A D C$.

18. In the figure, A, B, C and D are points on a circle. E is a point on $C D$ produced. $\angle A D E=98^{\circ}, A B=6 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$. Find the length of $A C$.

Level 2

19. In each of the following, find the smallest angle of the triangle.
(a) In $\triangle A B C, a=4 \mathrm{~cm}, b=11 \mathrm{~cm}$ and $c=9 \mathrm{~cm}$.
(b) In $\triangle X Y Z, x=18 \mathrm{~cm}, y=21 \mathrm{~cm}$ and $z=24 \mathrm{~cm}$.
20. In each of the following, solve the triangle.
(a) In $\triangle A B C, a=32 \mathrm{~cm}, c=23 \mathrm{~cm}$ and $B=131^{\circ}$.
(b) In $\triangle D E F, e=14 \mathrm{~cm}, f=8 \mathrm{~cm}$ and $D=53^{\circ}$.
(c) In $\triangle P Q R, p=32 \mathrm{~cm}, q=46 \mathrm{~cm}$ and $r=29 \mathrm{~cm}$.
21. In the figure, $A B C D$ is a parallelogram. $A B=16 \mathrm{~cm}, B C=20 \mathrm{~cm}$ and $\angle B C D=55^{\circ}$. Find the lengths of the two diagonals $B D$ and $A C$.
22. In the figure, $P Q=12 \mathrm{~cm}, P S=8 \mathrm{~cm}, Q R=6 \mathrm{~cm}, R S=13 \mathrm{~cm}$ and $\angle P Q R=72^{\circ}$.
(a) Find the length of $P R$.
(b) Find $\angle P R S$.
23. In the figure, $A B=22 \mathrm{~cm}, A D=19 \mathrm{~cm}, B C=15 \mathrm{~cm}, \angle A B C=37^{\circ}$ and $\angle C A D=28^{\circ}$.
(a) Find the lengths of $A C$ and $C D$.
(b) Find $\angle A C D$.
24. In the figure, $A B C$ is a straight line. $A D=11 \mathrm{~cm}, B C=5 \mathrm{~cm}, B D=8$ cm and $\angle A D B=90^{\circ}$.
(a) Find the length of $C D$.
(b) Find $\angle B D C$.
25. In the figure, $A D=5 \mathrm{~cm}, B C=10 \mathrm{~cm}, \angle A B D=21^{\circ}, \angle B A D=48^{\circ}$ and $\angle C B D=76^{\circ}$.
(a) Find the length of $B D$.
(b) Find the perimeter of the quadrilateral $A B C D$.
26. In the figure, $A D C$ is a straight line. $A D=17 \mathrm{~cm}, B D=23 \mathrm{~cm}$, $\angle B C D=85^{\circ}$ and $\angle C B D=32^{\circ}$.
(a) Find the length of $A B$.
(b) Find the perimeter of $\triangle A B C$.

27. In the figure, $\angle A D C=4 \angle A D B, A B=B D=10 \mathrm{~cm}, C D=12 \mathrm{~cm}$ and $\angle A B D=138^{\circ}$.
(a) Find $\angle B D C$.
 Explain your answer.

28. In the figure, $B C=7 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $\angle A C B=115^{\circ} . B C$ is produced to the point D such that $C D=A D$.
(a) Find the length of $A B$.

Explain (b) Determine whether $\triangle A B D$ is an acute-angled triangle, a rightangled triangle or an obtuse-angled triangle. Explain your answer.
29. In the figure, $A B C D$ is a trapezium, where $A D / / B C . A B=12 \mathrm{~cm}$, $A D=23 \mathrm{~cm}, B C=26 \mathrm{~cm}$ and $\angle A B C=52^{\circ}$.
(a) Find $\angle A D C$.
(b) Find the perimeter of $A B C D$.
30. In the figure, $A B=25 \mathrm{~cm}, A C=31 \mathrm{~cm}$ and $\angle B A C=55^{\circ} . D$ is a point on $B C$ such that $B D=12 \mathrm{~cm} . E$ is a point on $A D$ such that $\angle D C E=36^{\circ}$.
(a) Find the lengths of $C D$ and $A D$.
(b) Find $\angle A E C$.
31. In the figure, A, B, C and D are concyclic. $B D$ is the angle bisector of $\angle A D C . A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}$ and $B D=13.5 \mathrm{~cm}$. Find the perimeter of the quadrilateral $A B C D$.
32. In the figure, P, Q and R are points on the circle with centre O. $P Q=21 \mathrm{~cm}, Q R=(x+2) \mathrm{cm}, P R=(x-1) \mathrm{cm}$ and $\angle Q O R=120^{\circ}$.
(a) Find the value of x.
(b) Find $\angle O Q P$.
33. In the figure, A, B and P are points on the circle. $T P$ touches the circle at P. $A B T$ is a straight line. $A B=11 \mathrm{~cm}, A P=9 \mathrm{~cm}$ and $\angle B A P=28^{\circ}$.
(a) Find the length of $B P$.
(b) Find the length of $B T$.
(c) Find the radius of the circle.

34. In the figure, $A C$ and $B D$ intersect at the point $E . A D=15 \mathrm{~cm}$, $B C=18 \mathrm{~cm}, B E=11 \mathrm{~cm}, C E=9 \mathrm{~cm}$ and $\angle C A D=25^{\circ}$.
(a) Find the lengths of $D E$ and $A E$.

Explain (b) Is $A D$ parallel to $B C$? Explain your answer.
(c) Find the perimeter of the quadrilateral $A B C D$.
35. In the figure, $\triangle A B C$ is a right-angled triangle and $\triangle C D E$ is an acuteangled triangle. $A B=A E=D E, A C=34 \mathrm{~cm}, B C=31 \mathrm{~cm}$,
$\angle B C D=75^{\circ}$ and $\angle C A E=36^{\circ}$.
(a) Find the length of $A B$.
(b) Find $\angle A C E$.
(c) Find reflex $\angle A E D$.
36. (a) Let $f(x)=x^{2}-15 x+225$. Using the method of completing the square, find the coordinates of the vertex of the graph of $y=f(x)$.
(b) In the figure, $A B+B C=15 \mathrm{~cm}$ and $\angle A B C=120^{\circ}$. Let $A B=p$ cm .
(i) Express the length of $A C$ in terms of p.

Explain (ii) Can the perimeter of $\triangle A B C$ be less than 27 cm ? Explain your answer.
*37. In the figure, A and B are the centres of circles with radii 5 cm and 2 cm respectively. The two circles touch each other internally. C and E are points on the larger circle. $B E$ and $C D$ intersect at $A . A D=4 \mathrm{~cm}$ and $B C=\sqrt{52} \mathrm{~cm}$.
(a) Find the lengths of $B D$ and $D E$.

Explain (b) Are B, C, D and E concyclic? Explain your answer.
*38. In the figure, $A B C D$ is a trapezium, where $B A / / C D, B A=10.5 \mathrm{~cm}$, $C D=14 \mathrm{~cm}$ and $\angle A D C=90^{\circ}$. The area of $A B C D$ is $147 \mathrm{~cm}^{2} . E$ is the mid-point of $C D$ and $B C=B E$. $C G$ intersects $A D, A E$ and $B E$ at F, H and I respectively, where $A F: F D=1: 2$ and $G H=\sqrt{65} \mathrm{~cm}$.
(a) Find the lengths of $A E$ and $B C$.
(b) Find $\angle A E B$ and $\angle G I E$.
(c) Solve $\triangle A G H$.

Answers

Consolidation Exercise 9B

1. 5.18
2. 14.2
3. 25.4
4. 14.0
5. 58.8°
6. 55.1°
7. 84.6°
8. 30.8°
9. 143°
10. $B=38.3^{\circ}, C=112^{\circ}, B C=8.07 \mathrm{~cm}$
11. $D=50.8^{\circ}, F=24.2^{\circ}, D F=21.2 \mathrm{~cm}$
12. $X=19.7^{\circ}, Y=125^{\circ}, Z=35.4^{\circ}$
13. (a) 7.87 cm
(b) 13.2 cm
(c) 48.7 cm
(d) 38.3 cm
14. (a) 80.3°
(b) 98.4°
15. 65.9°
16. (a) 9.82 cm
(b) 43.7°
17. 129°
18. 16.9 cm
19. (a) 20.0°
(b) 46.6°
20. (a) $A=28.8^{\circ}, C=20.2^{\circ}, b=50.2 \mathrm{~cm}$
(b) $E=92.2^{\circ}, F=34.8^{\circ}, d=11.2 \mathrm{~cm}$
(c) $P=43.6^{\circ}, Q=97.8^{\circ}, R=38.7^{\circ}$
21. $B D=17.0 \mathrm{~cm}, A C=32.0 \mathrm{~cm}$
22. (a) 11.6 cm
(b) 37.4°
23. (a) $A C=13.5 \mathrm{~cm}, C D=9.51 \mathrm{~cm}$
(b) 110°
24. (a) 11.7 cm
(b) 20.3°
25. (a) 10.4 cm
(b) 40.6 cm
26. (a) 34.2 cm
(b) 84.1 cm
27. (a) 63°
(b) no
28. (a) 12.7 cm
(b) obtuse-angled triangle
29. (a) 65.1°
(b) 71.4 cm
30. (a) $C D=14.4 \mathrm{~cm}, A D=24.6 \mathrm{~cm}$
(b) 138°
31. 36.8 cm
32. (a) 17
(b) 16.8°
33. (a) 5.21 cm
(b) 5.55 cm
(c) 5.55 cm
34. (a) $D E=8.05 \mathrm{~cm}, A E=8.64 \mathrm{~cm}$
(b) no
(c) 49.4 cm
35. (a) 14.0 cm
(b) 19.9°
(c) 211°
36. (a) $\left(\frac{15}{2}, \frac{675}{4}\right)$
(b) (i) $\sqrt{p^{2}-15 p+225} \mathrm{~cm}$ (ii) no
37. (a) $B D=3.26 \mathrm{~cm}, D E=8.06 \mathrm{~cm}$
(b) no
38. (a) $A E=13.9 \mathrm{~cm}, B C=12.5 \mathrm{~cm}$
(b) $\angle A E B=46.5^{\circ}, \angle G I E=103^{\circ}$
(c) $\angle A G H=59.5^{\circ}, \angle A H G=30.0^{\circ}$, $\angle G A H=90.5^{\circ}, A G=4.03 \mathrm{~cm}$, $A H=6.95 \mathrm{~cm}$

F5B：Chapter 9C			
Date	Task	Progress	
	Lesson Worksheet	Complete and Checked Problems encountered Skipped	
	Book Example 12	Complete Problems encountered Skipped	
	Book Example 13	Complete Problems encountered Skipped	
	Book Example 14	Complete Problems encountered Skipped	（Video Teaching）
	Book Example 15	Complete Problems encountered Skipped	\square 全家 3 （Video Teaching）
	Book Example 16	Complete Problems encountered Skipped	（Video Teaching）
	Book Example 17	Complete Problems encountered Skipped	
	Book Example 18	Complete Problems encountered Skipped	

5B Lesson Worksheet 9.3A

Objective: To use the formula $\frac{1}{2} a b \sin C$ to find areas of triangles.
[In this worksheet, give the answers correct to 3 significant figures if necessary.]

Finding the Area of a Triangle Given Two Sides and Their Included Angle
Area of $\triangle A B C=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} c a \sin B$
$\wedge_{a}^{b}{ }_{C}$
${ }_{c}^{A} b$

Instant Example 1

In the figure, find the area of $\triangle A B C$.

Area of $\triangle A B C=\frac{1}{2} a b \sin C$

$$
=\frac{1}{2} \times 15 \times 18 \times \sin 42^{\circ} \mathrm{cm}^{2}
$$

$$
=\underline{\underline{90.3} \mathrm{~cm}^{2}} \text {, cor. to } 3 \text { sig. fig. }
$$

1. In the figure, find the area
of $\triangle A B C$.
Area of $\triangle A B C$
$=\frac{1}{2}(\quad)(\quad) \sin (\quad)$

Instant Practice 1

In the figure, find the area of $\triangle A B C$.

Area of $\triangle A B C=\frac{1}{2}(\quad)(\quad) \sin (\quad)$

$$
=\frac{1}{2} \times(\quad) \times(\quad) \times \sin (\quad) \mathrm{cm}^{2}
$$

$$
=\Longrightarrow \text {, cor. to } 3 \text { sig. fig. }
$$

2. In the figure, find the area of $\triangle A B C$.

Instant Example 2

In the figure, find a and the area of $\triangle A B C$.

By the sine formula,

$$
\begin{aligned}
\frac{a}{\sin 60^{\circ}} & =\frac{24 \mathrm{~cm}}{\sin 72^{\circ}} \\
a & =\frac{24 \sin 60^{\circ}}{\sin 72^{\circ}} \mathrm{cm} \\
& =\underline{21.9 \mathrm{~cm}}, \text { cor. to } 3 \text { sig. fig. }
\end{aligned}
$$

21.854

Area of $\triangle A B C=\frac{1}{2} c a \sin B$

$$
=\frac{1}{2} \times 24 \times 21.854 \times \sin 48^{\circ} \mathrm{cm}^{2}
$$

$$
=\underline{\underline{195 \mathrm{~cm}^{2}}} \text {, cor. to } 3 \text { sig. fig. }
$$

Instant Practice 2

In the figure, find c and the
area of $\triangle A B C$.
By the sine formula,

$$
\begin{aligned}
\frac{c}{\sin (\quad)} & =\frac{(\quad)}{\sin (\quad)} \\
c & =\frac{(\quad)(\quad)}{(\quad \mathrm{cm}}
\end{aligned}
$$

$=$ \qquad , cor to 3 sig. fig.
Area of $\triangle A B C=\frac{1}{2}(\quad)(\quad) \sin (\quad)$

In each of the following, find the area of the triangle. [Nos. 3-6]
\rightarrow Ex 9C: 7-9
3.

$$
\begin{aligned}
P+Q+R & =180^{\circ} \\
(\quad)+(\quad)+R & =180^{\circ} \\
R & =(\quad) \quad P<r=5 \mathrm{~cm}^{\circ} \underbrace{25^{\circ}}_{Q}
\end{aligned}
$$

4.

Need to find only one of b and c.
5. A is acute.

6.

Steps:

1. Use the sine formula to find A.
2. Find C.
3. Use $\frac{1}{2} a b \sin C$ to find the area.

食Level Up Question令

7. In $\triangle A B C, A B=5 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $\angle B A C=\theta$, where $0^{\circ}<\theta<180^{\circ}$.
(a) Find the area of $\triangle A B C$ when
(i) $\theta=30^{\circ}$,
(ii) $\theta=120^{\circ}$.

5B Lesson Worksheet 9.3B

Objective: To use Heron's formula to find areas of triangles.
[In this worksheet, give the answers correct to 3 significant figures if necessary.]

Find the Area of a Triangle Given Three Sides - Heron's Formula
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{1}{2}(a+b+c)$.

Instant Example 1

In the figure, $a=13 \mathrm{~cm}$,
$b=20 \mathrm{~cm}$ and $c=21 \mathrm{~cm}$.
Find the area of $\triangle A B C$.

$$
\begin{aligned}
s & =\frac{1}{2}(13+20+21) \mathrm{cm} \\
& =27 \mathrm{~cm}
\end{aligned}
$$

Instant Practice 1

In the figure, $a=9 \mathrm{~cm}$,
$b=5 \mathrm{~cm}$ and $c=6 \mathrm{~cm}$.

Find the area of $\triangle A B C$.

$$
\begin{aligned}
s & =\frac{1}{2}[(\quad)+(\quad)+(\quad)] \mathrm{cm} \\
& =(\quad) \mathrm{cm}
\end{aligned}
$$

By Heron's formula,
area of $\triangle A B C$
$=\sqrt{27(27-13)(27-20)(27-21)} \mathrm{cm}^{2}$
$=\underline{126 \mathrm{~cm}^{2}}$
By Heron's formula,
area of $\triangle A B C$
$=\sqrt{(\quad)(\quad)(\quad)} \mathrm{cm}^{2}$
$=$ \qquad , cor to 3 sig. fig.

In each of the following, find the area of the triangle. [Nos. 1-4]
Ex 9C: 11
1.

$$
\begin{aligned}
s & =\frac{1}{2}[(\quad)+(\quad)+(\quad)] \mathrm{cm} \\
& =(\quad) \mathrm{cm}
\end{aligned}
$$

2.

Instant Example 2

In the figure, find the area of $\triangle A B C$ and the value of h.

$s=\frac{1}{2}(15+19+10) \mathrm{cm}=22 \mathrm{~cm}$
By Heron's formula,
area of $\triangle A B C$
$=\sqrt{22(22-15)(22-19)(22-10)} \mathrm{cm}^{2}$
$=\underline{\underline{74.5 \mathrm{~cm}^{2}}}$, cor. to 3 sig. fig.
Area of $\triangle A B C=\frac{1}{2} \times A C \times B D$

$$
74.458=\frac{1}{2} \times 19 \times h
$$

$h=\underline{\underline{7.84}}$, cor. to 3 sig. fig.
74.458
74.458
$s=\frac{1}{2}[(\quad)+(\quad)+(\quad)] \mathrm{cm}=(\quad) \mathrm{cm}$
By Heron's formula
$s=\frac{1}{2}[(\quad)+(\quad)+(\quad)] \mathrm{cm}=(\quad) \mathrm{cm}$
By Heron's formula.
By Heron's formula,
area of $\triangle X Y Z$
$=\sqrt{(\quad)(\quad)(\quad} \mathrm{cm}^{2}$
$=$
Area of $\triangle X Y Z=\frac{1}{2} \times(\quad) \times X Q$

$$
\begin{aligned}
(\quad) & =\frac{1}{2} \times(\quad) \times h \\
h & =\underline{=}
\end{aligned}
$$

$s=\frac{1}{2}[(\quad)+(\quad)+(\quad)] \mathrm{cm}=(\quad) \mathrm{cm}$
By Heron's formula,

Instant Practice 2

In the figure, find the area of $\triangle X Y Z$ and the value of h.

$=$
5. In the figure, find the area of $\triangle P Q R$ and the value of h.

6. In the figure, find
the area of $\triangle X Y Z$ and the value of h.

吕Level Up Question食

7. In the figure, the perimeter of $\triangle A B C$ is 48 cm .
(a) Using Heron's formula, find the area of $\triangle A B C$.
$\xrightarrow{\text { Explain }(b)}$ Is the shortest distance between A and $B C$ greater than 8 cm ? Explain your answer.

9 Solving Triangles

8 Consolidation Exercise 9C

[In this exercise, give the answers correct to 3 significant figures if necessary.]

Level 1

1. In each of the following, find the area of the triangle.
(a)

(b)

(c)

In each of the following triangles, find the unknown. [Nos. 2-3]
2. (a)

(b) Area $=100 \mathrm{~cm}^{2}$

(c)

3. (a) θ is an acute angle.
(b) θ is an obtuse angle.
(c) θ is an obtuse angle.

4. The area of $\triangle A B C$ is $24 \mathrm{~cm}^{2}$ and C is an acute angle. If $a=12 \mathrm{~cm}$ and $b=6 \mathrm{~cm}$, find C.
5. In the figure, $\angle A B C=75^{\circ}$ and $B C=8 \mathrm{~cm}$. The area of $\triangle A B C$ is 42 cm^{2}.
(a) Find the length of $A B$.
(b) Find the length of $A C$.

6. In the figure, $\triangle P Q R$ is an acute-angled triangle. $P Q=15 \mathrm{~cm}$ and $Q R=25 \mathrm{~cm}$. The area of $\triangle P Q R$ is $185 \mathrm{~cm}^{2}$.
(a) Find $\angle P Q R$.
(b) Find the length of $P R$.

7. The lengths of the three sides of a triangle are $19 \mathrm{~cm}, 15 \mathrm{~cm}$ and $x \mathrm{~cm}$, where $4<x<15$. The area of the triangle is $91 \mathrm{~cm}^{2}$.
(a) Find the smallest angle of the triangle.
(b) Find the value of x.

In each of the following triangles, find the unknown and the area of $\triangle P Q R$. [Nos. 8-10]
8.

9.

10.

11. In each of the following, divide the polygon into triangles and hence find the area of the polygon.
(a) $P Q R S$ is a parallelogram.

(b) $A B C D E F$ is a regular hexagon.

12. In each of the following, find the area of the triangle using Heron's formula.
(a)

(b)

(c)

13. In the figure, $A B=21 \mathrm{~cm}, A C=15 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$.
(a) Using Heron's formula, find the area of $\triangle A B C$.
(b) Hence, find the value of h.

14. In the figure, $A B=16 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$. The perimeter of $\triangle A B C$ is 41 cm .
(a) Using Heron's formula, find the area of $\triangle A B C$.
(b) Hence, find the height from B to $A C$.

15. In the figure, $\angle B D C=90^{\circ}, A B=B C=10 \mathrm{~cm}, C D=8 \mathrm{~cm}$ and $A D=14 \mathrm{~cm}$.
(a) Find the area of the quadrilateral $A B C D$.
(b) Find the height of $\triangle A B D$ with $A B$ as the base.

Level 2

16. The area of $\triangle A B C$ is $50 \mathrm{~cm}^{2}$. If $a=6 \mathrm{~cm}$ and $c=19 \mathrm{~cm}$, find the two possible measures of B.
17. In each of the following, find the area of $\triangle A B C$.
(a) $A=42^{\circ}, C=104^{\circ}, a=5 \mathrm{~m}$
(b) $B=55^{\circ}, b=33 \mathrm{~cm}, c=22 \mathrm{~cm}$
18. In each of the following, find c.
(a) Area of $\triangle A B C=25 \mathrm{~m}^{2}, A=28^{\circ}, B=78^{\circ}$
(b) Area of $\triangle A B C=32 \mathrm{~cm}^{2}, A=32^{\circ}, B=64^{\circ}$
19. The figure shows a quadrilateral $A B C D$ with perimeter of 40 cm .
$A B=8 \mathrm{~cm}, A C=10 \mathrm{~cm}, A D=11 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$. Find the area of $A B C D$.

20. In the figure, A, B, C and D are concyclic. $A B=7 \mathrm{~cm}, B C=11 \mathrm{~cm}$, $=5 \mathrm{~cm}$ and $\angle A B C=51^{\circ}$.
(a) Find the length of $A C$.
(b) Find the area of the quadrilateral $A B C D$.

21. The perimeter of $\triangle P Q R$ is 85 cm and $Q R: P R: P Q=3: 8: 6$.
(a) Find the lengths of $Q R, P R$ and $P Q$.
(b) Using Heron's formula, find the area of $\triangle P Q R$.
(c) Hence, find the height from Q to $P R$.
22. The area of $\triangle X Y Z$ is $56 \mathrm{~cm}^{2}$ and $X: Y: Z=21: 7: 8$.
(a) Solve $\triangle X Y Z$.
(b) Find the height from X to $Y Z$.
23. In the figure, $A B=10 \mathrm{~cm}, A D=15 \mathrm{~cm}, \angle B A C=52^{\circ}$ and $\angle C A D=37^{\circ}$. The area of the quadrilateral $A B C D$ is $115 \mathrm{~cm}^{2}$.
(a) Find the length of $A C$.
(b) Find $\angle B C D$.

In each of the following, solve the triangle. [Nos. 24-25]
24. Area of $\triangle A B C=84 \mathrm{~cm}^{2}$

25. Area of $\triangle D E F=35 \mathrm{~cm}^{2}$

26. In $\triangle A B C, A B=11 \mathrm{~cm}, B C=21 \mathrm{~cm}$ and $\angle A B C=\theta$.
(a) If the area of $\triangle A B C$ is $75 \mathrm{~cm}^{2}$, find the possible measures of θ.

Explain (b) (i) If the area of $\triangle A B C$ is maximum, what is the measure of θ ? Explain your answer.
(ii) Hence, find the maximum area of $\triangle A B C$.
27. In the figure, $\angle B C D$ is an obtuse angle. $A B=31 \mathrm{~cm}, A D=28 \mathrm{~cm}$, $C D=16 \mathrm{~cm}, \angle A B C=69^{\circ}$ and $\angle B A D=74^{\circ}$.
(a) Find $\angle B C D$.
(b) Find the area of the quadrilateral $A B C D$.

28. In the figure, $A B=3.5 \mathrm{~cm}, B C=A E=3 \mathrm{~cm}, C D=6 \mathrm{~cm}, D E=4 \mathrm{~cm}$, $\angle B A E=120^{\circ}$ and $\angle C D E=95^{\circ}$. Find the area of the pentagon $A B C D E$.

29. In the figure, $B D$ is the angle bisector of $\angle A B C . A B=23 \mathrm{~cm}, A D=18$ cm and $\angle B A D=26^{\circ}$. The ratio of the area of $\triangle A B D$ to that of $\triangle B C D$ is $3: 2$.
(a) Find the area of $\triangle B C D$.

(b) Solve $\triangle B C D$.
30. In the figure, $O A B C$ is a sector with centre O. $A C$ and $O B$ intersect at $D . O A=O B=O C=12 \mathrm{~cm}, \angle B O C=34^{\circ}$ and $\angle B D C=81^{\circ}$.
(a) Find the area of $\triangle O A C$.
(b) Find the lengths of $A B$ and $A D$.
(c) Hence, find the total area of the shaded regions.

31. In the figure, P, Q and R are points on a circle with centre O. The radius of the circle is $14 \mathrm{~cm} . P S$ is the tangent to the circle at $P . O T R$, $P T Q$ and $Q R S$ are straight lines. The area of $\triangle O P Q$ is $49 \mathrm{~cm}^{2} . \angle P O Q$ is an obtuse angle and $P S=19 \mathrm{~cm}$.
(a) Find the length of $Q S$.

(b) Solve $\triangle Q R T$.
(c) Find the total area of the shaded regions.
32. In $\triangle P Q R, P Q=8 \mathrm{~cm}$ and $Q R=14 \mathrm{~cm}$.

Explain (a) Describe how the area of $\triangle P Q R$ varies when $\angle P Q R$ increases from 40° to 110°. Explain your answer.
(b) Suppose $\angle P Q R$ is an obtuse angle and the area of $\triangle P Q R$ is $36 \mathrm{~cm}^{2}$. Find $\angle P Q R$.
*33. In the figure, $A B C D E$ and $M N O P Q$ are regular pentagons, where $A B=7 \mathrm{~cm} . A M Q D, B N M E, C O N A, D P O B$ and $E Q P C$ are straight lines.
(a) Find the lengths of $A D$ and $P Q$.
(b) Find the areas of $A B C D E$ and $M N O P Q$.

*34. In the figure, $\triangle B C D$ and $\triangle A B D$ are isosceles triangles, where $B C=$ $C D$ and $A B=B D$. The area of $\triangle A B D$ is $65 \mathrm{~cm}^{2} . F$ is the mid-point of $B D . E$ is a point on $C D$ such that $C E: D E=1: 2 . A D=9 \mathrm{~cm}$ and $\angle B C D=104^{\circ}$.
(a) Find the length of $A B$ and $\angle B A D$.
(b) Find the area of $\triangle B C D$.
(c) Using Heron's formula, find the area of $\triangle A E F$.
*35. In the figure, $\triangle A B C$ and $\triangle B D E$ are equilateral triangles, where $A B<B D . M$ and N are the mid-points of $B C$ and $D E$ respectively. $A B D$ is a straight line.
Explain (a) Someone claims that the area of $\triangle A M N$ increases when the length of $B D$ increases. Do you agree? Explain your answer.

(b) If the area of $\triangle A B C$ is $16 \mathrm{~cm}^{2}$ and $M N=9 \mathrm{~cm}$, find $\angle B M N$.
*36. In the figure, O is the circumcentre of $\triangle A B C . A B=7 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.
(a) Find the radius of the circumcircle.
(b) Find the total area of the shaded regions.
(c) Find the perpendicular distance from O to $A C$.

*37. In the figure, G is the in-centre of $\triangle A B C$. The radius of the inscribed circle of $\triangle A B C$ is $r \mathrm{~cm} . A B=c \mathrm{~cm}, A C=b \mathrm{~cm}$ and $B C=a \mathrm{~cm}$.
(a) Express the area of $\triangle B C G$ in terms of a and r.
(b) Prove that $r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$, where $s=\frac{a+b+c}{2}$.

(c) Suppose $a=16, b=30$ and $c=32$.
(i) Find the area of $\triangle A B C$.
(ii) Find the radius of the inscribed circle of $\triangle A B C$.
(iii) Find the length of $A G$.

Answers

Consolidation Exercise 9C

1. (a) $39.9 \mathrm{~cm}^{2}$
(b) $15.5 \mathrm{~cm}^{2}$
(c) $31.9 \mathrm{~cm}^{2}$
2.

(a) 12.7
(b) 21.8
(c) 9.17
3.
(a) 41.2°
(b) 124°
(c) 125°
4. 41.8°
5. (a) 10.9 cm
(b) 11.7 cm
6. (a) 80.6°
(b) 27.0 cm
7. (a) 39.7°
(b) 12.1
8. $q=7.41 \mathrm{~cm}$, area $=31.4 \mathrm{~cm}^{2}$
9. $r=16.8 \mathrm{~cm}$, area $=108 \mathrm{~cm}^{2}$
10. $\theta=61.3^{\circ}$, area $=94.7 \mathrm{~cm}^{2}$
11. (a) $45.9 \mathrm{~cm}^{2}$
(b) $166 \mathrm{~cm}^{2}$
12. (a) $39.7 \mathrm{~cm}^{2}$
(b) $42 \mathrm{~cm}^{2}$
(c) $39.6 \mathrm{~cm}^{2}$
13. (a) $46.4 \mathrm{~cm}^{2}$
(b) 6.19
14. (a) $75.5 \mathrm{~cm}^{2}$
(b) 13.7 cm
15. (a) $50.0 \mathrm{~cm}^{2}$
(b) 5.20 cm
16. $61.3^{\circ}, 119^{\circ}$
17. (a) $10.1 \mathrm{~m}^{2}$
(b) $363 \mathrm{~cm}^{2}$
18. (a) 10.2 m
(b) 11.6 cm
19. $85.7 \mathrm{~cm}^{2}$
20. (a) 8.55 cm
(b) $38.6 \mathrm{~cm}^{2}$
21. (a) $Q R=15 \mathrm{~cm}, P R=40 \mathrm{~cm}, P Q=30 \mathrm{~cm}$
(b) $191 \mathrm{~cm}^{2}$
(c) 9.56 cm
22. (a) $X=105^{\circ}, Y=35^{\circ}, Z=40^{\circ}, Y Z=17.1$
cm ,
$X Z=10.2 \mathrm{~cm}, X Y=11.4 \mathrm{~cm}$
(b) 6.54 cm
23. (a) 13.6 cm
(b) 126°
24. $A=11.9^{\circ}, C=38.1^{\circ}, A B=25.7 \mathrm{~cm}$,
$B C=8.55 \mathrm{~cm}, A C=31.8 \mathrm{~cm}$
25. $E=117^{\circ}, F=19.9^{\circ}, D E=6.27 \mathrm{~cm}$, $D F=16.4 \mathrm{~cm}, E F=12.5 \mathrm{~cm}$
26. (a) $40.5^{\circ}, 140^{\circ}$
(b) (i) 90°
(ii) $115.5 \mathrm{~cm}^{2}$
27. (a) 131°
(b) $556 \mathrm{~cm}^{2}$
28. $24.0 \mathrm{~cm}^{2}$
29. (a) $60.5 \mathrm{~cm}^{2}$
(b) $\angle B C D=42.8^{\circ}, \angle B D C=88.0^{\circ}$, $\angle C B D=49.2^{\circ}, B C=15.3 \mathrm{~cm}$, $B D=10.4 \mathrm{~cm}, C D=11.6 \mathrm{~cm}$
30. (a) $71.8 \mathrm{~cm}^{2}$
(b) $A B=10.5 \mathrm{~cm}, A D=9.57 \mathrm{~cm}$
(c) $21.5 \mathrm{~cm}^{2}$
31. (a) 28.7 cm
(b) $\angle Q R T=54.7^{\circ}, \angle Q T R=85.7^{\circ}$, $\angle R Q T=39.7^{\circ}, Q R=16.2 \mathrm{~cm}$, $Q T=13.2 \mathrm{~cm}, R T=10.4 \mathrm{~cm}$
(c) $162 \mathrm{~cm}^{2}$
32. (b) 140°
33. (a) $A D=11.3 \mathrm{~cm}, P Q=2.67 \mathrm{~cm}$
(b) area of $A B C D E=84.3 \mathrm{~cm}^{2}$, area of $M N O P Q=12.3 \mathrm{~cm}^{2}$
34. (a) $A B=15.1 \mathrm{~cm}, \angle B A D=72.7^{\circ}$
(b) $44.7 \mathrm{~cm}^{2}$
(c) $20.5 \mathrm{~cm}^{2}$
35. (a) no
(b) 70.3°
36. (a) 3.57 cm
(b) $25.4 \mathrm{~cm}^{2}$
(c) 2.55 cm
37. (a) $\frac{1}{2} a r \mathrm{~cm}^{2}$
(c) (i) $238 \mathrm{~cm}^{2}$
(ii) 6.10 cm
(iii) 23.8 cm

