Program 1: Quadratic Formula

Given a function: $y = ax^2 + bx + c$, find the coordinates of vertex, the discriminant and the roots 1st: *a* Input: 2nd: *b* 3rd: *c* Display: 1st: *x*-coordinate of vertex 2nd: y-coordinate of vertex 3rd: discriminant ($\Delta = b^2 - 4ac$) 4th: 1st root (1st *x*-intercept) 5th: 2nd root (2nd *x*-intercept) Example: Given a Quadratic Function: $y = x^2 + 3x - 4$ [Prog] [1] [1] [EXE] [3] [EXE] [-4] [EXE] 1st Display: -1.5 (*x*-coordinates of vertex) [EXE] 2nd Display: -6.25 (y-coordinates of vertex) [EXE] 3rd Display: 25 (discriminant) [EXE] 4th Display: 1 (root)

[EXE]

5th Display: -4 (root)

Calculator Programme (FX-3650P)

Program 2: Simultaneous Equations

	151 bytes		
1	$? \rightarrow D: ? \rightarrow X: ? \rightarrow Y: ? \rightarrow C: ? \rightarrow B: ? \rightarrow A:$		
2	$CX^2 - DXB + AD^2 \rightarrow C : ? \rightarrow M : 2YAD - MX^2 - BXY \rightarrow M :$		
3	$? \rightarrow B : DXB M + : AY^2 + XYB \rightarrow A : ? \rightarrow B : A - BX^2 \rightarrow A :$		
4	$C \Longrightarrow Goto 1 : A \stackrel{J}{\longrightarrow} M : Goto 2 : Lbl 1 :$		
5	$(\sqrt{(M^2 - 4AC) + M})^{J}(2C \rightarrow A \checkmark (Y - DA)^{J}X$		
6	$M \downarrow C - A : Lbl 2 : Ans (Y - D Ans) \downarrow X$		

Given a system of simultaneous equations, find the solutions.

Case 1: One Linear Equation and One Quadratic Equation, i.e.

$$\begin{cases} Px + Qy = R \\ Ax^{2} + Bxy + Cx^{2} + Dx + Ey = F \end{cases}$$

Input:

1st: P2nd: Q3rd: R4th: A5th: B6th: C7th: D8th: E9th: FDisplay:1st: x_1 2nd: y_1

```
(The first set of solution is (x_1, y_1))
```

3rd: x_2

```
4th: y_2
```

```
(The second set of solution is (x_2, y_2))
```

Example:

Solve $\begin{cases} x + 2y = 5\\ x^2 + 2xy + y^2 + 3x + 4y = 20 \end{cases}$ [Prog] [2] [1] [EXE] [2] [EXE] [5] [EXE] [1] [EXE] [2] [EXE] [1] [EXE] [3] [EXE] [4] [EXE] [20] [EXE] 1st Display : 1 [EXE] 2nd Display : 2 (The first set of solution is x = 1 and y = 2)

[EXE]
3rd Display:
$$-15$$

[EXE]

4th Display: 10 (The second set of solution is x = -15 and y = 10)

```
Case 2: Two Linear Equations, i.e.
            \begin{cases} Ax + By = C\\ Dx + Ey = F \end{cases}
     Input:
     1st: A
                                        4th: D
                 2nd: B
                            3rd: C
                                                    5th: E
                                                                6th: F
     Display:
      1st: x_1
     2nd: y_1
           (The set of solution is (x_1, y_1))
     Example:
     Solve \begin{cases} 3x + 4y = 10\\ x + 3y = 5 \end{cases}
     [Prog] [2]
     [3] [EXE] [4] [EXE] [10] [EXE] [0] EXE] [0] [EXE] [0] [EXE] [1] [EXE] [3] [EXE] [5] [EXE]
      1st Display : 2
     [EXE]
     2nd Display : 1
                         (The set of solution is x = 2 and y = 1)
```

Program 3: Cosine Formula

	89 bytes		
1	Mem clear : $? \rightarrow A : ? \rightarrow B : ? \rightarrow C : ? \rightarrow D :$		
2	$D \Rightarrow \sqrt{(B^2 + C^2 - 2BC \cos D)} \rightarrow A$		
3	$D = 0 \implies \cos^{-1} ((B^2 + C^2 - A^2) \div 2BC \rightarrow D$		
4	$\cos^{-1}((C^2 + A^2 - B^2) \div 2CA$		
5	π^{r} – D – Ans \checkmark 2 ⁻¹ BC sin D		

Case 1: Given 3 sides of a triangle, find the 3 angles and the area of the triangle

$$\cos \angle A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos \angle B = \frac{a^2 + c^2 - b^2}{2ac}, \quad \cos \angle C = \frac{a^2 + b^2 - c^2}{2ab},$$

Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$

Input: 1st: *a* 2nd: *b* 3rd: *c* 4th: 0 (the input '0' is indicating that 3 sides are given) *Display*: 1st: $\angle A$ 2nd: $\angle B$ 3rd: $\angle C$ 4th: Area of $\triangle ABC$ <u>Example</u>:

Find $\angle A$, $\angle B$, $\angle C$ a	and the area of $\triangle ABC$.				
[Prog] [3]					
[8] [EXE] [9] [EXE] [10] [EXE] [0] [EXE]					
1st Display: 49.458	$(\angle A = 49.458^{\circ})$				
[EXE]					
2nd Display: 58.752	$(\angle B = 58.752^{\circ})$				
[EXE]					
3rd Display: 71.790	$(\angle C = 71.790^{\circ})$				
[EXE]					
4th Display: 34.197	(Area of $\triangle ABC = 34.197$)				

Case 2:

Given 2 sides and the included angle of a triangle, find the 3rd side, the remaining angles and the area of the triangle.

Program 4: Polynomial Division

	46 bytes
1	Mem clear : $? \rightarrow A : ? \rightarrow B : ? \rightarrow M :$
2	Lbl 1 : C : ? \rightarrow C : (C – B Ans) $^{\perp}$ A \rightarrow C :
3	$1 \text{ M}-: \text{M} \geq 0 \Rightarrow \text{Goto } 1: \text{AC}$

Given a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and a linear polynomial g(x) = px + q,

find the quotient and remainder when f(x) is divided by g(x).

Input		Display
1st: <i>p</i>	(the coefficient of <i>x</i> of the divisor)	
2nd: <i>q</i>	(the constant term of the divisor)	
3rd: <i>n</i>	(the degree of the dividend)	
4th: a_n	(the coefficient of the term with highest	
	degree in the dividend)	
		1st: b_{n-1} (the coefficient of the term with highest
		degree in the quotient)
5th: a_{n-1} (the coefficient of the term with second		
	highest degree in the dividend)	
		2nd: b_{n-2} (the coefficient of the term with second
		highest degree in the quotient)
?th: a_1	(the coefficient of <i>x</i> in the dividend)	
		?th: b_0 (the constant term in the quotient)
Final: a_0 (the constant term in the dividend)		
		Final: <i>R</i> (the remainder)

i.e. the Quotient is $b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$ and the Remainder is R

Example:

Find the quotient and remainder when $2x^4 + 3x^3 + 5x^2 + 4x + 6$ is divided by 2x + 1.

Input		Displa	лу
[Prog] [4]			
[2] [EXE] [1] [EXE]	(coefficients of divisor)		
[4]	(degree of dividend)		
[2]	(leading coefficient)		
		1 (coefficient of x^3 in the quotient)
[3]	(second coefficient)		
		1 (coefficient of x^2 in the quotient)
[5]			
		2 (coefficient of x in the quotient)
[4]			
		1 (constant term in the quotient)
[6]			
		5 (1	remainder)

i.e. the quotient is $x^3 + x^2 + 2x + 1$ and the remainder is 5

or $2x^4 + 3x^3 + 5x^2 + 4x + 6 = (2x+1)(x^3 + x^2 + 2x + 1) + 5$