Program 1: Quadratic Formula

	49 bytes
1	$? \rightarrow \mathrm{~A}: ? \rightarrow \mathrm{~B}: ? \rightarrow \mathrm{C}:-\mathrm{B} \div 2 \mathrm{~A} \rightarrow \mathrm{M} \boldsymbol{\square}$
2	$\mathrm{C}-\mathrm{AM}^{2} \boldsymbol{\Delta}-4 \mathrm{~A} \mathrm{Ans} \rightarrow \mathrm{C} \boldsymbol{\square}$
3	$\mathrm{M}+\sqrt{ } \mathrm{Ans} \div 2 \mathrm{~A} \rightarrow \mathrm{~A} \boldsymbol{\square}$
4	$2 \mathrm{M}-\mathrm{Ans} \rightarrow \mathrm{B}$

Given a function: $y=a x^{2}+b x+c$, find the coordinates of vertex, the discriminant and the roots
Input: \quad 1st: $a \quad$ 2nd: $b \quad$ 3rd: c
Display:
1st: x-coordinate of vertex
2nd: y-coordinate of vertex
3rd: discriminant ($\Delta=b^{2}-4 a c$)
4th: 1st root (1st x-intercept)
5th: 2nd root (2nd x-intercept)
Example:
Given a Quadratic Function: $y=x^{2}+3 x-4$
[Prog] [1]
[1] [EXE] [3] [EXE] [-4] [EXE]
1st Display: -1.5 (x-coordinates of vertex)
[EXE]
2nd Display: -6.25 (y-coordinates of vertex)

[EXE]

3rd Display: 25 (discriminant)
[EXE]
4th Display: 1 (root)
[EXE]
5th Display: -4 (root)

Calculator Programme (FX-3650P)

Program 2: Simultaneous Equations

	151 bytes
1	$? \rightarrow \mathrm{D}: ? \rightarrow \mathrm{X}: ? \rightarrow \mathrm{Y}: ? \rightarrow \mathrm{C}: ? \rightarrow \mathrm{~B}: ? \rightarrow \mathrm{~A}:$
2	$\mathrm{CX}^{2}-\mathrm{DXB}+\mathrm{AD}^{2} \rightarrow \mathrm{C}: ? \rightarrow \mathrm{M}: 2 \mathrm{YAD}-\mathrm{MX}^{2}-\mathrm{BXY} \rightarrow \mathrm{M}:$
3	$? \rightarrow \mathrm{~B}: \mathrm{DXB} \mathrm{M}+: \mathrm{AY}^{2}+\mathrm{XYB} \rightarrow \mathrm{A}: ? \rightarrow \mathrm{~B}: \mathrm{A}-\mathrm{BX}^{2} \rightarrow \mathrm{~A}:$
4	$\mathrm{C}=>$ Goto 1: $\mathrm{A}^{\dagger} \mathrm{M}$: Goto $2: \mathrm{Lbl} 1$:
5	$\left(\sqrt{ }\left(\mathrm{M}^{2}-4 \mathrm{AC}\right)+\mathrm{M}\right){ }^{\text {d }}\left(2 \mathrm{C} \rightarrow \mathrm{A} \boldsymbol{\Delta}(\mathrm{Y}-\mathrm{DA})^{\dagger} \mathrm{X} \boldsymbol{\lambda}\right.$
6	$\mathrm{M}{ }^{\perp} \mathrm{C}-\mathrm{A}: \mathrm{Lbl} 2: \mathrm{Ans} \boldsymbol{\triangle}(\mathrm{Y}-\mathrm{D} \text { Ans })^{\dagger} \mathrm{X}$

Given a system of simultaneous equations, find the solutions.
Case 1: One Linear Equation and One Quadratic Equation, i.e.

$$
\left\{\begin{array}{l}
P x+Q y=R \\
A x^{2}+B x y+C x^{2}+D x+E y=F
\end{array}\right.
$$

Input:

$\begin{array}{lllllll}\text { 1st: } P & \text { 2nd: } Q & \text { 3rd: } R & \text { 4th: } A & \text { 5th: } B & \text { 6th: } C & \text { 7th: } D\end{array}$ 8th: $E \quad$ 9th: F
Display:
1st: x_{1}
2nd: y_{1}
(The first set of solution is $\left(x_{1}, y_{1}\right)$)
3rd: x_{2}
4th: y_{2}
(The second set of solution is $\left(x_{2}, y_{2}\right)$)
Example:
Solve $\left\{\begin{array}{l}x+2 y=5 \\ x^{2}+2 x y+y^{2}+3 x+4 y=20\end{array}\right.$.
[Prog] [2]
[1] [EXE] [2] [EXE] [5] [EXE] [1] [EXE] [2] [EXE] [1] [EXE] [3] [EXE] [4] [EXE] [20] [EXE]
1st Display : 1
[EXE]
2nd Display:2 (The first set of solution is $x=1$ and $y=2$)
[EXE]
3rd Display: -15
[EXE]
4th Display: 10 (The second set of solution is $x=-15$ and $y=10$)

Case 2: Two Linear Equations, i.e.

$$
\left\{\begin{array}{l}
A x+B y=C \\
D x+E y=F
\end{array}\right.
$$

Input:
1st: $A \quad$ 2nd: $B \quad$ 3rd: $C \quad$ 4th: $D \quad$ 5th: $E \quad$ 6th: F
Display:
1st: x_{1}
2nd: y_{1}
(The set of solution is $\left(x_{1}, y_{1}\right)$)
Example:
Solve $\left\{\begin{array}{c}3 x+4 y=10 \\ x+3 y=5\end{array}\right.$.
[Prog] [2]
[3] [EXE] [4] [EXE] [10] [EXE] [0] EXE] [0] [EXE] [0] [EXE] [1] [EXE] [3] [EXE] [5] [EXE]
1st Display : 2
[EXE]
2nd Display : $1 \quad$ (The set of solution is $x=2$ and $y=1$)

Program 3: Cosine Formula

89 bytes
1 Mem clear : ? $\rightarrow \mathrm{A}: ? \rightarrow \mathrm{~B}: ? \rightarrow \mathrm{C}: ? \rightarrow \mathrm{D}:$
$2 \mathrm{D}=>\sqrt{ }\left(\mathrm{B}^{2}+\mathrm{C}^{2}-2 \mathrm{BC} \cos \mathrm{D} \rightarrow \mathrm{A}\right.$
$3 \mathrm{D}=0=>\cos ^{-1}\left(\left(\mathrm{~B}^{2}+\mathrm{C}^{2}-\mathrm{A}^{2}\right) \div 2 \mathrm{BC} \rightarrow \mathrm{D} \boldsymbol{\square}\right.$
$4 \cos ^{-1}\left(\left(C^{2}+\mathrm{A}^{2}-\mathrm{B}^{2}\right) \div 2 \mathrm{CA}\right.$
$5 \pi^{\mathrm{r}}-\mathrm{D}-\mathrm{Ans} \boldsymbol{\square} 2^{-1} \mathrm{BC} \sin \mathrm{D}$

Case 1: Given 3 sides of a triangle, find the 3 angles and the area of the triangle

\boldsymbol{a}	$\cos \angle A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos \angle B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}, \cos \angle C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$,
$\boldsymbol{A}_{\boldsymbol{B}}$	Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{a+b+c}{2}$

$\begin{array}{lllll}\text { Input: } & \text { 1st: } a & \text { 2nd: } b & \text { 3rd: } c & \text { 4th: } 0\end{array}$ (the input ' 0 ' is indicating that 3 sides are given)
Display: 1st: $\angle A \quad$ 2nd: $\angle B \quad$ 3rd: $\angle C \quad$ 4th: Area of $\triangle A B C$
Example:

Find $\angle A, \angle B, \angle C$ and the area of $\triangle A B C$.
[Prog] [3]
[8] [EXE] [9] [EXE] [10] [EXE] [0] [EXE]
1st Display: $49.458 \quad\left(\angle A=49.458^{\circ}\right)$
[EXE]
2nd Display: $58.752 \quad\left(\angle B=58.752^{\circ}\right)$
[EXE]
3rd Display: $71.790 \quad\left(\angle C=71.790^{\circ}\right)$
[EXE]
4th Display: $34.197 \quad$ (Area of $\triangle A B C=34.197$)

Case 2:

Given 2 sides and the included angle of a triangle, find the 3rd side, the remaining angles and the area of the triangle.

$$
\begin{aligned}
& B C^{2}=b^{2}+c^{2}-2 b c \cos \angle A \\
& \frac{\sin \angle A}{B C}=\frac{\sin \angle B}{b}=\frac{\sin \angle C}{c}
\end{aligned}
$$

Area of $\triangle A B C=\frac{1}{2} b c \sin \angle A$

Input:
1st: $0 \quad$ (the input ' 0 ' is indicating that one side is NOT given)
2nd: $b \quad$ 3rd: $c \quad$ 4th: $\angle A$
Display:
1st: $B C \quad$ 2nd: $\angle B \quad$ 3rd: $\angle C \quad$ 4th: Area of $\triangle A B C$
Example:

Find $B C, \angle B, \angle C$ and the area of $\triangle A B C$.
[Prog] [3]
[0] [EXE] [4] [EXE] [6] [EXE] [50] [EXE]
1st Display: $4.598 \quad(B C=4.598)$
[EXE]
2nd Display: $41.785 \quad\left(\angle B=41.785^{\circ}\right)$
[EXE]
3rd Display: $88.215 \quad\left(\angle C=88.215^{\circ}\right)$
[EXE]
4th Display: $9.193 \quad$ (Area of $\triangle A B C=9.193$)

Program 4: Polynomial Division

	46 bytes
1	Mem clear $: ? \rightarrow \mathrm{~A}: ? \rightarrow \mathrm{~B}: ? \rightarrow \mathrm{M}:$
2	Lbl $1: \mathrm{C}: ? \rightarrow \mathrm{C}:(\mathrm{C}-\mathrm{B}$ Ans $)\lrcorner^{\lrcorner} \mathrm{A} \rightarrow \mathrm{C}:$
3	$1 \mathrm{M}-: \mathrm{M} \geqq 0 \rightarrow$ Goto $1: \mathrm{AC}$

Given a polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and a linear polynomial $g(x)=p x+q$, find the quotient and remainder when $f(x)$ is divided by $g(x)$.

Input	Display
1 st : $p \quad$ (the coefficient of x of the divisor)	
2nd: q (the constant term of the divisor)	
3rd: $n \quad$ (the degree of the dividend)	
4th: a_{n} (the coefficient of the term with highest degree in the dividend)	
	1st: b_{n-1} (the coefficient of the term with highest degree in the quotient)
5th: a_{n-1} (the coefficient of the term with second highest degree in the dividend)	
	2nd: b_{n-2} (the coefficient of the term with second highest degree in the quotient)
	...
?th: a_{1} (the coefficient of x in the dividend)	
	?th: b_{0} (the constant term in the quotient)
Final: a_{0} (the constant term in the dividend)	
	Final: R (the remainder)

i.e. the Quotient is $b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\cdots+b_{1} x+b_{0}$ and the Remainder is R

Example:
Find the quotient and remainder when $2 x^{4}+3 x^{3}+5 x^{2}+4 x+6$ is divided by $2 x+1$.

i.e. the quotient is $x^{3}+x^{2}+2 x+1$ and the remainder is 5
or $2 x^{4}+3 x^{3}+5 x^{2}+4 x+6=(2 x+1)\left(x^{3}+x^{2}+2 x+1\right)+5$

